These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18233254)

  • 1. Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field.
    Brandt J; Fröhlich D; Sandfort C; Bayer M; Stolz H; Naka N
    Phys Rev Lett; 2007 Nov; 99(21):217403. PubMed ID: 18233254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Bose-Einstein condensates of excitons in a bulk semiconductor.
    Morita Y; Yoshioka K; Kuwata-Gonokami M
    Nat Commun; 2022 Sep; 13(1):5388. PubMed ID: 36104375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of orthoexciton-to-paraexciton conversion in Cu(2)O by excitonic Lyman spectroscopy.
    Kubouchi M; Yoshioka K; Shimano R; Mysyrowicz A; Kuwata-Gonokami M
    Phys Rev Lett; 2005 Jan; 94(1):016403. PubMed ID: 15698106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensation of paraexcitons in stressed Cu2O.
    Lin JL; Wolfe JP
    Phys Rev Lett; 1993 Aug; 71(8):1222-1225. PubMed ID: 10055481
    [No Abstract]   [Full Text] [Related]  

  • 5. Resonant excitation of graphene k-phonon and intra-landau-level excitons in magneto-optical spectroscopy [corrected].
    Orlita M; Tan LZ; Potemski M; Sprinkle M; Berger C; de Heer WA; Louie SG; Martinez G
    Phys Rev Lett; 2012 Jun; 108(24):247401. PubMed ID: 23004329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexistence of Bose-Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O.
    Snoke DW; Lin JL; Wolfe JP
    Phys Rev B Condens Matter; 1991 Jan; 43(1):1226-1228. PubMed ID: 9996332
    [No Abstract]   [Full Text] [Related]  

  • 7. Linewidth collapse in three-photon exciton-polariton spectra of CsI under pressure.
    Yoo CH; Lipp MJ; Strachan D; Daniels WB
    Phys Rev Lett; 2000 Apr; 84(17):3875-8. PubMed ID: 11019228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bose-Einstein condensation of excitons in Cu2O: progress over 30 years.
    Snoke D; Kavoulakis GM
    Rep Prog Phys; 2014 Nov; 77(11):116501. PubMed ID: 25345654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anharmonicity-driven redshift and broadening of sharp terahertz features of α-glycine single crystal from 20 K to 300 K: Theory and experiment.
    Allen JL; Sanders TJ; Horvat J; Lewis RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 244():118635. PubMed ID: 32858447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Engineering Intrinsic Line Widths and Line Broadening in Perovskite Nanoplatelets.
    Liu A; Nagamine G; Bonato LG; Almeida DB; Zagonel LF; Nogueira AF; Padilha LA; Cundiff ST
    ACS Nano; 2021 Apr; 15(4):6499-6506. PubMed ID: 33769788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonuniform Excitonic Charge Distribution Enhances Exciton-Phonon Coupling in ZnSe/CdSe Alloyed Quantum Dots.
    Gong K; Kelley DF; Kelley AM
    J Phys Chem Lett; 2017 Feb; 8(3):626-630. PubMed ID: 28107015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Action Approach to Bose-Einstein Condensation of Ideal Gases.
    Kirsten K; Toms DJ
    J Res Natl Inst Stand Technol; 1996; 101(4):471-486. PubMed ID: 27805102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical point for Bose-Einstein condensation of excitons in graphite.
    Wang J; Nie P; Li X; Zuo H; Fauqué B; Zhu Z; Behnia K
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30215-30219. PubMed ID: 33199600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magneto-absorption spectra of hydrogen-like yellow exciton series in cuprous oxide: excitons in strong magnetic fields.
    Artyukhin S; Fishman D; Faugeras C; Potemski M; Revcolevschi A; Mostovoy M; Loosdrecht PHMV
    Sci Rep; 2018 May; 8(1):7818. PubMed ID: 29777121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS
    Ruppert C; Chernikov A; Hill HM; Rigosi AF; Heinz TF
    Nano Lett; 2017 Feb; 17(2):644-651. PubMed ID: 28059520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast energy transfer and strong dynamic non-condon effect on ligand field transitions by coherent phonon in gamma-Fe2O3 nanocrystals.
    Chen TY; Hsia CH; Son HS; Son DH
    J Am Chem Soc; 2007 Sep; 129(35):10829-36. PubMed ID: 17696432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incoherent phonon population and exciton-exciton annihilation dynamics in monolayer WS
    Han S; Boguschewski C; Gao Y; Xiao L; Zhu J; van Loosdrecht PHM
    Opt Express; 2019 Oct; 27(21):29949-29961. PubMed ID: 31684250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized emission of CdSe nanocrystals in magnetic field: the role of phonon-assisted recombination of the dark exciton.
    Qiang G; Golovatenko AA; Shornikova EV; Yakovlev DR; Rodina AV; Zhukov EA; Kalitukha IV; Sapega VF; Kaibyshev VK; Prosnikov MA; Christianen PCM; Onushchenko AA; Bayer M
    Nanoscale; 2021 Jan; 13(2):790-800. PubMed ID: 33351019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-width dependence of exciton-longitudinal-optical-phonon coupling in MgZnO/ZnO single quantum wells.
    Sun JW; Zhang BP
    Nanotechnology; 2008 Dec; 19(48):485401. PubMed ID: 21836301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.