BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 18233325)

  • 1. Observation of excitons in one-dimensional metallic single-walled carbon nanotubes.
    Wang F; Cho DJ; Kessler B; Deslippe J; Schuck PJ; Louie SG; Zettl A; Heinz TF; Shen YR
    Phys Rev Lett; 2007 Nov; 99(22):227401. PubMed ID: 18233325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic effects and optical spectra of single-walled carbon nanotubes.
    Spataru CD; Ismail-Beigi S; Benedict LX; Louie SG
    Phys Rev Lett; 2004 Feb; 92(7):077402. PubMed ID: 14995885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of exciton-phonon sideband in individual metallic single-walled carbon nanotubes.
    Zeng H; Zhao H; Zhang FC; Cui X
    Phys Rev Lett; 2009 Apr; 102(13):136406. PubMed ID: 19392381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bound excitons in metallic single-walled carbon nanotubes.
    Deslippe J; Spataru CD; Prendergast D; Louie SG
    Nano Lett; 2007 Jun; 7(6):1626-30. PubMed ID: 17508770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantized bimolecular auger recombination of excitons in single-walled carbon nanotubes.
    Huang L; Krauss TD
    Phys Rev Lett; 2006 Feb; 96(5):057407. PubMed ID: 16486987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size, dimensionality, and strong electron correlation in nanoscience.
    Brus L
    Acc Chem Res; 2014 Oct; 47(10):2951-9. PubMed ID: 25120173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous exciton dissociation in carbon nanotubes.
    Kumamoto Y; Yoshida M; Ishii A; Yokoyama A; Shimada T; Kato YK
    Phys Rev Lett; 2014 Mar; 112(11):117401. PubMed ID: 24702413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.
    Korovyanko OJ; Sheng CX; Vardeny ZV; Dalton AB; Baughman RH
    Phys Rev Lett; 2004 Jan; 92(1):017403. PubMed ID: 14754017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.