These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 18233390)

  • 1. Ab initio method for calculating electron-phonon scattering times in semiconductors: application to GaAs and GaP.
    Sjakste J; Vast N; Tyuterev V
    Phys Rev Lett; 2007 Dec; 99(23):236405. PubMed ID: 18233390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio study of hot electrons in GaAs.
    Bernardi M; Vigil-Fowler D; Ong CS; Neaton JB; Louie SG
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5291-6. PubMed ID: 25870287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft surfaces of nanomaterials enable strong phonon interactions.
    Bozyigit D; Yazdani N; Yarema M; Yarema O; Lin WM; Volk S; Vuttivorakulchai K; Luisier M; Juranyi F; Wood V
    Nature; 2016 Mar; 531(7596):618-22. PubMed ID: 26958836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron-phonon coupling from the theoretical and experimental viewpoints.
    Sjakste J; Tanimura K; Barbarino G; Perfetti L; Vast N
    J Phys Condens Matter; 2018 Sep; 30(35):353001. PubMed ID: 30084390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intervalley-scattering-induced electron-phonon energy relaxation in many-valley semiconductors at low temperatures.
    Prunnila M; Kivinen P; Savin A; Törmä P; Ahopelto J
    Phys Rev Lett; 2005 Nov; 95(20):206602. PubMed ID: 16384078
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhang XW; Cao T
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton-Phonon Interaction and Relaxation Times from First Principles.
    Chen HY; Sangalli D; Bernardi M
    Phys Rev Lett; 2020 Sep; 125(10):107401. PubMed ID: 32955294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-Phonon Coupling from Ab Initio Linear-Response Theory within the GW Method: Correlation-Enhanced Interactions and Superconductivity in Ba_{1-x}K_{x}BiO_{3}.
    Li Z; Antonius G; Wu M; da Jornada FH; Louie SG
    Phys Rev Lett; 2019 May; 122(18):186402. PubMed ID: 31144877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of Thermal Relaxation of Electrons in Semiconductors.
    Sadasivam S; Chan MKY; Darancet P
    Phys Rev Lett; 2017 Sep; 119(13):136602. PubMed ID: 29341683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots.
    Kilina SV; Neukirch AJ; Habenicht BF; Kilin DS; Prezhdo OV
    Phys Rev Lett; 2013 May; 110(18):180404. PubMed ID: 23683182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2.
    Weber F; Rosenkranz S; Castellan JP; Osborn R; Hott R; Heid R; Bohnen KP; Egami T; Said AH; Reznik D
    Phys Rev Lett; 2011 Sep; 107(10):107403. PubMed ID: 21981528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Control of Non-Equilibrium Phonon Dynamics.
    Krishnamoorthy A; Lin MF; Zhang X; Weninger C; Ma R; Britz A; Tiwary CS; Kochat V; Apte A; Yang J; Park S; Li R; Shen X; Wang X; Kalia R; Nakano A; Shimojo F; Fritz D; Bergmann U; Ajayan P; Vashishta P
    Nano Lett; 2019 Aug; 19(8):4981-4989. PubMed ID: 31260315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon.
    Bernardi M; Vigil-Fowler D; Lischner J; Neaton JB; Louie SG
    Phys Rev Lett; 2014 Jun; 112(25):257402. PubMed ID: 25014830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-phonon dynamics in 2D carbon based-hybrids XC (X  =  Si, Ge, Sn).
    Drissi LB; Kanga NB; Lounis S; Djeffal F; Haddad S
    J Phys Condens Matter; 2019 Apr; 31(13):135702. PubMed ID: 30726191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory.
    Lee NE; Zhou JJ; Chen HY; Bernardi M
    Nat Commun; 2020 Mar; 11(1):1607. PubMed ID: 32231205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio approach to the excited electron dynamics in rutile and anatase TiO2.
    Zhukov VP; Chulkov EV
    J Phys Condens Matter; 2010 Nov; 22(43):435802. PubMed ID: 21403335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe_{2}.
    Waldecker L; Bertoni R; Hübener H; Brumme T; Vasileiadis T; Zahn D; Rubio A; Ernstorfer R
    Phys Rev Lett; 2017 Jul; 119(3):036803. PubMed ID: 28777602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.