These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 18233410)

  • 1. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.
    Ma X; Adamska L; Yamaguchi H; Yalcin SE; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10782-9. PubMed ID: 25265272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes.
    Plentz F; Ribeiro HB; Jorio A; Strano MS; Pimenta MA
    Phys Rev Lett; 2005 Dec; 95(24):247401. PubMed ID: 16384421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles.
    Htoon H; O'Connell MJ; Cox PJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2004 Jul; 93(2):027401. PubMed ID: 15323949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.
    Srivastava A; Htoon H; Klimov VI; Kono J
    Phys Rev Lett; 2008 Aug; 101(8):087402. PubMed ID: 18764659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length-dependent optical effects in single walled carbon nanotubes.
    Rajan A; Strano MS; Heller DA; Hertel T; Schulten K
    J Phys Chem B; 2008 May; 112(19):6211-3. PubMed ID: 18327930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes.
    Hertel T; Himmelein S; Ackermann T; Stich D; Crochet J
    ACS Nano; 2010 Dec; 4(12):7161-8. PubMed ID: 21105744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence dynamics and fine structure of dark excitons in semiconducting single-wall carbon nanotubes.
    Alfonsi J; Meneghetti M
    J Phys Condens Matter; 2012 Jun; 24(25):255501. PubMed ID: 22647714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes.
    Zhang Y; Valley N; Brozena AH; Piao Y; Song X; Schatz GC; Wang Y
    J Phys Chem Lett; 2013 Mar; 4(5):826-30. PubMed ID: 26281939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence of single-walled carbon nanotubes: the role of Stokes shift and impurity levels.
    Mu J; Ma Y; Yin H; Liu C; Rohlfing M
    Phys Rev Lett; 2013 Sep; 111(13):137401. PubMed ID: 24116815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.