These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18233426)

  • 1. Quantitative determination of the hubbard model phase diagram from optical lattice experiments by two-parameter scaling.
    Campo VL; Capelle K; Quintanilla J; Hooley C
    Phys Rev Lett; 2007 Dec; 99(24):240403. PubMed ID: 18233426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature of Mott-insulator transition with ultracold fermions in a one-dimensional optical lattice.
    Liu XJ; Drummond PD; Hu H
    Phys Rev Lett; 2005 Apr; 94(13):136406. PubMed ID: 15904012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct mapping of the finite temperature phase diagram of strongly correlated quantum models.
    Zhou Q; Kato Y; Kawashima N; Trivedi N
    Phys Rev Lett; 2009 Aug; 103(8):085701. PubMed ID: 19792739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local quantum criticality in confined fermions on optical lattices.
    Rigol M; Muramatsu A; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2003 Sep; 91(13):130403. PubMed ID: 14525290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staggered-vortex superfluid of ultracold bosons in an optical lattice.
    Lim LK; Smith CM; Hemmerich A
    Phys Rev Lett; 2008 Apr; 100(13):130402. PubMed ID: 18517921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallicity in a Holstein-Hubbard Chain at Half Filling with Gaussian Anharmonicity.
    Lavanya CU; Sankar IV; Chatterjee A
    Sci Rep; 2017 Jun; 7(1):3774. PubMed ID: 28630434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum phases of the extended Bose-Hubbard hamiltonian: possibility of a supersolid state of cold atoms in optical lattices.
    Scarola VW; Das Sarma S
    Phys Rev Lett; 2005 Jul; 95(3):033003. PubMed ID: 16090740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure Mott phases in confined ultracold atomic systems.
    Rousseau VG; Batrouni GG; Sheehy DE; Moreno J; Jarrell M
    Phys Rev Lett; 2010 Apr; 104(16):167201. PubMed ID: 20482076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite temperature mott transition in hubbard model on anisotropic triangular lattice.
    Ohashi T; Momoi T; Tsunetsugu H; Kawakami N
    Phys Rev Lett; 2008 Feb; 100(7):076402. PubMed ID: 18352576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between Anderson localization and antiferromagnetism in correlated lattice fermion systems with disorder.
    Byczuk K; Hofstetter W; Vollhardt D
    Phys Rev Lett; 2009 Apr; 102(14):146403. PubMed ID: 19392461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mott domains of bosons confined on optical lattices.
    Batrouni GG; Rousseau V; Scalettar RT; Rigol M; Muramatsu A; Denteneer PJ; Troyer M
    Phys Rev Lett; 2002 Sep; 89(11):117203. PubMed ID: 12225165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cumulant Green's functions method for the Hubbard model.
    Lira RN; Riseborough PS; Silva-Valencia J; Figueira MS
    J Phys Condens Matter; 2023 Mar; 35(24):. PubMed ID: 36944247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interacting fermionic atoms in optical lattices diffuse symmetrically upwards and downwards in a gravitational potential.
    Mandt S; Rapp A; Rosch A
    Phys Rev Lett; 2011 Jun; 106(25):250602. PubMed ID: 21770621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory.
    Dirks A; Mikelsons K; Krishnamurthy HR; Freericks JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023306. PubMed ID: 25353604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultracold fermions and the SU(N) Hubbard model.
    Honerkamp C; Hofstetter W
    Phys Rev Lett; 2004 Apr; 92(17):170403. PubMed ID: 15169134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductivity in the Square Lattice Hubbard Model at High Temperatures: Importance of Vertex Corrections.
    Vučičević J; Kokalj J; Žitko R; Wentzell N; Tanasković D; Mravlje J
    Phys Rev Lett; 2019 Jul; 123(3):036601. PubMed ID: 31386456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-Order on the Triangular Lattice: A Mean-Field Study for the Lattice
    Kapcia KJ
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mott transition of fermionic atoms in a three-dimensional optical trap.
    Helmes RW; Costi TA; Rosch A
    Phys Rev Lett; 2008 Feb; 100(5):056403. PubMed ID: 18352400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.