These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18233479)

  • 1. Magnetoconductance of carbon nanotube p-n junctions.
    Andreev AV
    Phys Rev Lett; 2007 Dec; 99(24):247204. PubMed ID: 18233479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sample-specific and ensemble-averaged magnetoconductance of individual single-wall carbon nanotubes.
    Man HT; Morpurgo AF
    Phys Rev Lett; 2005 Jul; 95(2):026801. PubMed ID: 16090708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gate-Controlled Quantum Interference Effects in a Clean Single-Wall Carbon Nanotube p-n Junction.
    Deng X; Gong K; Wang Y; Liu Z; Jiang K; Kang N; Zhang Z
    Phys Rev Lett; 2023 May; 130(20):207002. PubMed ID: 37267546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube based magnetic tunnel junctions.
    Mehrez H; Taylor J; Guo H; Wang J; Roland C
    Phys Rev Lett; 2000 Mar; 84(12):2682-5. PubMed ID: 11017299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field.
    Jhang SH; Margańska M; Skourski Y; Preusche D; Grifoni M; Wosnitza J; Strunk C
    Phys Rev Lett; 2011 Mar; 106(9):096802. PubMed ID: 21405643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric magnetoconductance and magneto-Coulomb effect in a carbon nanotube single electron transistor.
    Lee JS; Park JW; Song JY; Kim J
    Nanotechnology; 2013 May; 24(19):195201. PubMed ID: 23579569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotube-metal junctions: 2- and 3-terminal electrical transport.
    Ke SH; Yang W; Baranger HU
    J Chem Phys; 2006 May; 124(18):181102. PubMed ID: 16709090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoresistance of nanoscale molecular devices based on Aharonov-Bohm interferometry.
    Hod O; Baer R; Rabani E
    J Phys Condens Matter; 2008 Sep; 20(38):383201. PubMed ID: 21693808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aharonov-Bohm conductance modulation in ballistic carbon nanotubes.
    Lassagne B; Cleuziou JP; Nanot S; Escoffier W; Avriller R; Roche S; Forró L; Raquet B; Broto JM
    Phys Rev Lett; 2007 Apr; 98(17):176802. PubMed ID: 17501520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of magnetic field on Mott's variable-range hopping parameters in multiwall carbon nanotube mat.
    Arya VP; Prasad V; Kumar PS
    J Phys Condens Matter; 2012 Jun; 24(24):245602. PubMed ID: 22627115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the sign of magnetoconductance in Andreev quantum dots.
    Whitney RS; Jacquod P
    Phys Rev Lett; 2009 Dec; 103(24):247002. PubMed ID: 20366223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The BN-pair impurity in carbon nanotubes and the possibility for disorder-induced frustration of gap formation.
    Cartoixà X; Rurali R
    Nanotechnology; 2008 Nov; 19(44):445709. PubMed ID: 21832751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. h/e magnetic flux modulation of the energy gap in nanotube quantum dots.
    Coskun UC; Wei TC; Vishveshwara S; Goldbart PM; Bezryadin A
    Science; 2004 May; 304(5674):1132-4. PubMed ID: 15155943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically active substitutional nitrogen impurity in carbon nanotubes.
    Nevidomskyy AH; Csányi G; Payne MC
    Phys Rev Lett; 2003 Sep; 91(10):105502. PubMed ID: 14525489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of nanoscale magnetic activity using a single carbon nanotube.
    Soldano C; Kar S; Talapatra S; Nayak S; Ajayan PM
    Nano Lett; 2008 Dec; 8(12):4498-505. PubMed ID: 19367805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of band structure on quantum interference in multiwall carbon nanotubes.
    Stojetz B; Miko C; Forró L; Strunk C
    Phys Rev Lett; 2005 May; 94(18):186802. PubMed ID: 15904392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
    Zhou X; Hedberg J; Miyahara Y; Grutter P; Ishibashi K
    Nanotechnology; 2014 Dec; 25(49):495703. PubMed ID: 25412585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Carbon Nanotube Electronic Properties by Lithium Cation Intercalation.
    Korsun OM; Kalugin ON; Prezhdo OV
    J Phys Chem Lett; 2014 Dec; 5(23):4129-33. PubMed ID: 26278944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.