These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Aharonov-Bohm interference and beating in single-walled carbon-nanotube interferometers. Cao J; Wang Q; Rolandi M; Dai H Phys Rev Lett; 2004 Nov; 93(21):216803. PubMed ID: 15601048 [TBL] [Abstract][Full Text] [Related]
23. Reentrant semiconducting behavior of zigzag carbon nanotubes at substitutional doping by oxygen dimers. Jhi SH; Louie SG; Cohen ML Phys Rev Lett; 2005 Nov; 95(22):226403. PubMed ID: 16384248 [TBL] [Abstract][Full Text] [Related]
24. Modulated chemical doping of individual carbon nanotubes. Zhou C; Kong J; Yenilmez E; Dai H Science; 2000 Nov; 290(5496):1552-5. PubMed ID: 11090348 [TBL] [Abstract][Full Text] [Related]
27. On the sensing mechanism in carbon nanotube chemiresistors. Salehi-Khojin A; Khalili-Araghi F; Kuroda MA; Lin KY; Leburton JP; Masel RI ACS Nano; 2011 Jan; 5(1):153-8. PubMed ID: 21186822 [TBL] [Abstract][Full Text] [Related]
28. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices. Ryu H; Kälblein D; Weitz RT; Ante F; Zschieschang U; Kern K; Schmidt OG; Klauk H Nanotechnology; 2010 Nov; 21(47):475207. PubMed ID: 21030776 [TBL] [Abstract][Full Text] [Related]
29. Quantum transport in parallel magnetic fields: a realization of the Berry-Robnik symmetry phenomenon. Meyer JS; Altland A; Altshuler BL Phys Rev Lett; 2002 Nov; 89(20):206601. PubMed ID: 12443493 [TBL] [Abstract][Full Text] [Related]
30. Bromophenyl functionalization of carbon nanotubes: an ab initio study. Janssen JL; Beaudin J; Hine ND; Haynes PD; Côté M Nanotechnology; 2013 Sep; 24(37):375702. PubMed ID: 23974267 [TBL] [Abstract][Full Text] [Related]
31. Electronic Structure of Semiconducting and Metallic Tubes in TiO2/Carbon Nanotube Heterojunctions: Density Functional Theory Calculations. Long R J Phys Chem Lett; 2013 Apr; 4(8):1340-6. PubMed ID: 26282150 [TBL] [Abstract][Full Text] [Related]
32. Electrical behavior of Langmuir-Blodgett networks of sorted metallic and semiconducting single-walled carbon nanotubes. Massey MK; Rosamond MC; Pearson C; Zeze DA; Petty MC Langmuir; 2012 Oct; 28(43):15385-91. PubMed ID: 23036116 [TBL] [Abstract][Full Text] [Related]
33. Separation of metallic from semiconducting single-walled carbon nanotubes. Krupke R; Hennrich F; Löhneysen Hv; Kappes MM Science; 2003 Jul; 301(5631):344-7. PubMed ID: 12829788 [TBL] [Abstract][Full Text] [Related]
37. Experimental investigation of the breakdown of the Onsager-Casimir relations. Marlow CA; Taylor RP; Fairbanks M; Shorubalko I; Linke H Phys Rev Lett; 2006 Mar; 96(11):116801. PubMed ID: 16605849 [TBL] [Abstract][Full Text] [Related]
38. Propagative Landau states and Fermi level pinning in carbon nanotubes. Nanot S; Avriller R; Escoffier W; Broto JM; Roche S; Raquet B Phys Rev Lett; 2009 Dec; 103(25):256801. PubMed ID: 20366272 [TBL] [Abstract][Full Text] [Related]
39. On the applicability of cluster models to study the chemical reactivity of carbon nanotubes. Denis PA; Iribarne F J Comput Chem; 2011 Aug; 32(11):2397-403. PubMed ID: 21598274 [TBL] [Abstract][Full Text] [Related]
40. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]