These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18233492)

  • 1. Classifying the expansion kinetics and critical surface dynamics of growing cell populations.
    Block M; Schöll E; Drasdo D
    Phys Rev Lett; 2007 Dec; 99(24):248101. PubMed ID: 18233492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual-based and continuum models of growing cell populations: a comparison.
    Byrne H; Drasdo D
    J Math Biol; 2009 Apr; 58(4-5):657-87. PubMed ID: 18841363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic model for tumor growth.
    Izquierdo-Kulich E; Nieto-Villar JM
    Math Biosci Eng; 2007 Oct; 4(4):687-98. PubMed ID: 17924719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Growth and Pattern Formation in Membrane-Protein Systems.
    Cagnetta F; Evans MR; Marenduzzo D
    Phys Rev Lett; 2018 Jun; 120(25):258001. PubMed ID: 29979071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed d -mer diffusion describing the Kardar-Parisi-Zhang-type surface growth.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031112. PubMed ID: 20365702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic properties in a family of competitive growing models.
    Horowitz CM; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031111. PubMed ID: 16605504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface pattern formation and scaling described by conserved lattice gases.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051114. PubMed ID: 20866192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation.
    Carrasco IS; Oliveira TJ
    Phys Rev E; 2016 Nov; 94(5-1):050801. PubMed ID: 27967078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of (2+1) -dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021125. PubMed ID: 19391724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells.
    Huergo MA; Pasquale MA; González PH; Bolzán AE; Arvia AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011918. PubMed ID: 22400602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuation and relaxation properties of pulled fronts: A scenario for nonstandard kardar-parisi-zhang scaling.
    Tripathy G; van Saarloos W
    Phys Rev Lett; 2000 Oct; 85(17):3556-9. PubMed ID: 11030949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transients due to instabilities hinder Kardar-Parisi-Zhang scaling: a unified derivation for surface growth by electrochemical and chemical vapor deposition.
    Cuerno R; Castro M
    Phys Rev Lett; 2001 Dec; 87(23):236103. PubMed ID: 11736462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments.
    Azimzade Y; Saberi AA; Sahimi M
    Phys Rev E; 2019 Dec; 100(6-1):062409. PubMed ID: 31962455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model.
    Ódor G; Kelling J; Gemming S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032146. PubMed ID: 24730828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growing surfaces with anomalous diffusion: results for the fractal Kardar-Parisi-Zhang equation.
    Katzav E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031607. PubMed ID: 14524781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico testing of the universality of epithelial tissue growth.
    Mazarei M; Åström J; Westerholm J; Karttunen M
    Phys Rev E; 2022 Dec; 106(6):L062402. PubMed ID: 36671099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformal invariance of isoheight lines in a two-dimensional Kardar-Parisi-Zhang surface.
    Saberi AA; Niry MD; Fazeli SM; Rahimi Tabar MR; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051607. PubMed ID: 18643079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-consistent expansion for the molecular beam epitaxy equation.
    Katzav E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):032103. PubMed ID: 11909126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic models for tumoral growth.
    Escudero C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):020902. PubMed ID: 16605321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic scaling analysis of two-dimensional cell colony fronts in a gel medium: a biological system approaching a quenched Kardar-Parisi-Zhang universality.
    Huergo MA; Muzzio NE; Pasquale MA; Pedro González PH; Bolzán AE; Arvia AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022706. PubMed ID: 25215757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.