These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 18233545)
1. Electron-electron and spin-orbit interactions in armchair graphene ribbons. Zarea M; Sandler N Phys Rev Lett; 2007 Dec; 99(25):256804. PubMed ID: 18233545 [TBL] [Abstract][Full Text] [Related]
2. Unscreened Coulomb interactions and the quantum spin Hall phase in neutral zigzag graphene ribbons. Zarea M; Büsser C; Sandler N Phys Rev Lett; 2008 Nov; 101(19):196804. PubMed ID: 19113295 [TBL] [Abstract][Full Text] [Related]
3. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction. Jiang L; Liu Z; Zhao X; Zheng Y J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909 [TBL] [Abstract][Full Text] [Related]
4. Helical edge states and edge-state transport in strained armchair graphene nanoribbons. Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764 [TBL] [Abstract][Full Text] [Related]
5. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
6. Protected Pseudohelical Edge States in Z_{2}-Trivial Proximitized Graphene. Frank T; Högl P; Gmitra M; Kochan D; Fabian J Phys Rev Lett; 2018 Apr; 120(15):156402. PubMed ID: 29756852 [TBL] [Abstract][Full Text] [Related]
7. Persistent currents in a graphene ring with armchair edges. Huang BL; Chang MC; Mou CY J Phys Condens Matter; 2012 Jun; 24(24):245304. PubMed ID: 22617621 [TBL] [Abstract][Full Text] [Related]
8. The quantum anomalous Hall effect in kagomé lattices. Zhang ZY J Phys Condens Matter; 2011 Sep; 23(36):365801. PubMed ID: 21852732 [TBL] [Abstract][Full Text] [Related]
9. The effect of spin mixing on the quantum Hall effect in graphene. Sheng L; Sheng DN; Xing DY J Phys Condens Matter; 2009 Oct; 21(40):405501. PubMed ID: 21832417 [TBL] [Abstract][Full Text] [Related]
10. A topological Dirac insulator in a quantum spin Hall phase. Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240 [TBL] [Abstract][Full Text] [Related]
11. Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State. Sichau J; Prada M; Anlauf T; Lyon TJ; Bosnjak B; Tiemann L; Blick RH Phys Rev Lett; 2019 Feb; 122(4):046403. PubMed ID: 30768326 [TBL] [Abstract][Full Text] [Related]
12. Strong interface-induced spin-orbit interaction in graphene on WS2. Wang Z; Ki DK; Chen H; Berger H; MacDonald AH; Morpurgo AF Nat Commun; 2015 Sep; 6():8339. PubMed ID: 26391068 [TBL] [Abstract][Full Text] [Related]
13. Quantum spin Hall effect in graphene. Kane CL; Mele EJ Phys Rev Lett; 2005 Nov; 95(22):226801. PubMed ID: 16384250 [TBL] [Abstract][Full Text] [Related]
14. Electron dynamics in graphene with spin-orbit couplings and periodic potentials. Seshadri R; Sen D J Phys Condens Matter; 2017 Apr; 29(15):155303. PubMed ID: 28195563 [TBL] [Abstract][Full Text] [Related]
15. Observation of phonon anomaly at the armchair edge of single-layer graphene in air. Zhang W; Li LJ ACS Nano; 2011 Apr; 5(4):3347-53. PubMed ID: 21388225 [TBL] [Abstract][Full Text] [Related]
16. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons. Li YY; Chen MX; Weinert M; Li L Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261 [TBL] [Abstract][Full Text] [Related]
17. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures. Kuo DMT Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299660 [TBL] [Abstract][Full Text] [Related]
18. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions. Tung Nguyen L; Huy Pham C; Lien Nguyen V J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866 [TBL] [Abstract][Full Text] [Related]
19. Conductivity tensor of graphene dominated by spin-orbit coupling scatterers: A comparison between the results from Kubo and Boltzmann transport theories. Liu Z; Jiang L; Zheng Y Sci Rep; 2016 Mar; 6():23762. PubMed ID: 27029398 [TBL] [Abstract][Full Text] [Related]
20. Improving One-Electron Exact-Two-Component Relativistic Methods with the Dirac-Coulomb-Breit-Parameterized Effective Spin-Orbit Coupling. Ehrman J; Martinez-Baez E; Jenkins AJ; Li X J Chem Theory Comput; 2023 Sep; 19(17):5785-5790. PubMed ID: 37589436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]