These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18233579)

  • 21. Jamming of particles in a two-dimensional fluid-driven flow.
    Guariguata A; Pascall MA; Gilmer MW; Sum AK; Sloan ED; Koh CA; Wu DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061311. PubMed ID: 23367936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uniform resonant chaotic mixing in fluid flows.
    Solomon TH; Mezić I
    Nature; 2003 Sep; 425(6956):376-80. PubMed ID: 14508482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaotic advection, diffusion, and reactions in open flows.
    Tel T; Karolyi G; Pentek A; Scheuring I; Toroczkai Z; Grebogi C; Kadtke J
    Chaos; 2000 Mar; 10(1):89-98. PubMed ID: 12779365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photophoretic trapping of multiple particles in tapered-ring optical field.
    Liu F; Zhang Z; Wei Y; Zhang Q; Cheng T; Wu X
    Opt Express; 2014 Sep; 22(19):23716-23. PubMed ID: 25321838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clustering, chaos, and crisis in a bailout embedding map.
    Thyagu NN; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046218. PubMed ID: 17995093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moving finite-size particles in a flow: a physical example of pitchfork bifurcations of tori.
    Zahnow JC; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026215. PubMed ID: 18352111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the history force on inertial particle advection: gravitational effects and horizontal diffusion.
    Guseva K; Feudel U; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042909. PubMed ID: 24229251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperbolic regions in flows through three-dimensional pore structures.
    Hyman JD; Winter CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063014. PubMed ID: 24483564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particle transport onto human airway surfaces.
    Heyder J
    Eur J Respir Dis Suppl; 1982; 119():29-50. PubMed ID: 6954086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of impurities in a three-dimensional volume-preserving map.
    Das S; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012906. PubMed ID: 25122359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
    van Ertbruggen C; Hirsch C; Paiva M
    J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population dynamics advected by chaotic flows: A discrete-time map approach.
    Lopez C; Hernandez-Garcia E; Piro O; Vulpiani A; Zambianchi E
    Chaos; 2001 Jun; 11(2):397-403. PubMed ID: 12779474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fractal dimension in dissipative chaotic scattering.
    Seoane JM; Sanjuán MA; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016208. PubMed ID: 17677544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Memory effects are relevant for chaotic advection of inertial particles.
    Daitche A; Tél T
    Phys Rev Lett; 2011 Dec; 107(24):244501. PubMed ID: 22243003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A perturbation-theoretic approach to Lagrangian flow networks.
    Fujiwara N; Kirchen K; Donges JF; Donner RV
    Chaos; 2017 Mar; 27(3):035813. PubMed ID: 28364772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covariant Lyapunov analysis of chaotic Kolmogorov flows.
    Inubushi M; Kobayashi MU; Takehiro S; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016331. PubMed ID: 22400681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermittent flow in yield-stress fluids slows down chaotic mixing.
    Wendell DM; Pigeonneau F; Gouillart E; Jop P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023024. PubMed ID: 24032940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.