These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 18233617)
1. Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation. Benguria RD; Depassier MC; Haikala V Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051101. PubMed ID: 18233617 [TBL] [Abstract][Full Text] [Related]
2. Weakly pushed nature of "pulled" fronts with a cutoff. Panja D; van Saarloos W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057202. PubMed ID: 12059760 [TBL] [Abstract][Full Text] [Related]
3. Duration of transient fronts in a bistable reaction-diffusion equation in a one-dimensional bounded domain. Horikawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066108. PubMed ID: 19256906 [TBL] [Abstract][Full Text] [Related]
4. Continuous-time random walks and traveling fronts. Fedotov S; Méndez V Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):030102. PubMed ID: 12366090 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms. Boubendir Y; Méndez V; Rotstein HG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036601. PubMed ID: 21230197 [TBL] [Abstract][Full Text] [Related]
6. Velocity fluctuations of stochastic reaction fronts propagating into an unstable state: Strongly pushed fronts. Khain E; Meerson B; Sasorov P Phys Rev E; 2020 Aug; 102(2-1):022137. PubMed ID: 32942446 [TBL] [Abstract][Full Text] [Related]
7. Variational principles and the shift in the front speed due to a cutoff. Méndez V; Campos D; Zemskov EP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056113. PubMed ID: 16383694 [TBL] [Abstract][Full Text] [Related]
8. Piecewise linear emulation of propagating fronts as a method for determining their speeds. Theodorakis S; Svoukis E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):027201. PubMed ID: 14525152 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction. Rotstein HG; Zhabotinsky AM; Epstein IR Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522 [TBL] [Abstract][Full Text] [Related]
10. Effect of environmental fluctuations on invasion fronts. Méndez V; Llopis I; Campos D; Horsthemke W J Theor Biol; 2011 Jul; 281(1):31-8. PubMed ID: 21549716 [TBL] [Abstract][Full Text] [Related]
11. Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations. Rocco A; Ramírez-Piscina L; Casademunt J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056116. PubMed ID: 12059656 [TBL] [Abstract][Full Text] [Related]
12. Minimal speed of fronts of reaction-convection-diffusion equations. Benguria RD; Depassier MC; Méndez V Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031106. PubMed ID: 15089264 [TBL] [Abstract][Full Text] [Related]
13. Front propagation in weakly subcritical pattern-forming systems. Ponedel BC; Kao HC; Knobloch E Phys Rev E; 2017 Sep; 96(3-1):032208. PubMed ID: 29347036 [TBL] [Abstract][Full Text] [Related]
14. Stability of convective patterns in reaction fronts: a comparison of three models. Vasquez DA; Coroian DI Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049 [TBL] [Abstract][Full Text] [Related]
15. Fluctuation-induced instabilities in front propagation up a comoving reaction gradient in two dimensions. Wylie CS; Levine H; Kessler DA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016119. PubMed ID: 16907163 [TBL] [Abstract][Full Text] [Related]
16. Bistable reaction-diffusion systems can have robust zero-velocity fronts. Sepulchre JA; Krinsky VI Chaos; 2000 Dec; 10(4):826-833. PubMed ID: 12779432 [TBL] [Abstract][Full Text] [Related]
17. Wavy fronts and speed bifurcation in excitable systems with cross diffusion. Zemskov EP; Kassner K; Hauser MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036219. PubMed ID: 18517497 [TBL] [Abstract][Full Text] [Related]
18. Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion equations. Ma M; Yue J; Ou C Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180898. PubMed ID: 31007561 [TBL] [Abstract][Full Text] [Related]
19. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion. Cisternas J; Karpitschka S; Wehner S J Chem Phys; 2014 Oct; 141(16):164106. PubMed ID: 25362271 [TBL] [Abstract][Full Text] [Related]
20. Speed of traveling fronts in a sigmoidal reaction-diffusion system. Zemskov EP; Kassner K; Tsyganov MA; Epstein IR Chaos; 2011 Mar; 21(1):013115. PubMed ID: 21456829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]