These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18233724)

  • 1. Optimization of synchronization in gradient clustered networks.
    Wang X; Huang L; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056113. PubMed ID: 18233724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to global synchronization in clustered networks.
    Guan S; Wang X; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046211. PubMed ID: 18517714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of synchronization in complex clustered networks.
    Huang L; Lai YC; Gatenby RA
    Chaos; 2008 Mar; 18(1):013101. PubMed ID: 18377052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple effects of gradient coupling on network synchronization.
    Wang X; Zhou C; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056208. PubMed ID: 18643143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization-based scalability of complex clustered networks.
    Ma X; Huang L; Lai YC; Wang Y; Zheng Z
    Chaos; 2008 Dec; 18(4):043109. PubMed ID: 19123619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing synchronization based on complex gradient networks.
    Wang X; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056205. PubMed ID: 17677146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onset of synchronization in complex gradient networks.
    Wang X; Huang L; Guan S; Lai YC; Lai CH
    Chaos; 2008 Sep; 18(3):037117. PubMed ID: 19045491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternating synchronizability of complex clustered networks with regular local structure.
    Huang L; Lai YC; Gatenby RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016103. PubMed ID: 18351911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase synchronization of bursting neurons in clustered small-world networks.
    Batista CA; Lameu EL; Batista AM; Lopes SR; Pereira T; Zamora-López G; Kurths J; Viana RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016211. PubMed ID: 23005511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization performance of complex oscillator networks.
    Yan G; Chen G; Lü J; Fu ZQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056116. PubMed ID: 20365052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph operations and synchronization of complex networks.
    Atay FM; Biyikoğlu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016217. PubMed ID: 16090076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing synchronization by directionality in complex networks.
    Zeng A; Son SW; Yeung CH; Fan Y; Di Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):045101. PubMed ID: 21599227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing network synchronizability by strengthening a single node.
    Fan H; Wang Y; Yang K; Wang X
    Phys Rev E; 2019 Apr; 99(4-1):042305. PubMed ID: 31108592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and directionality in complex networks.
    Son SW; Kim BJ; Hong H; Jeong H
    Phys Rev Lett; 2009 Nov; 103(22):228702. PubMed ID: 20366129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion dynamics and synchronizability of hierarchical products of networks.
    Skardal PS
    Phys Rev E; 2017 Oct; 96(4-1):042302. PubMed ID: 29347571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cluster synchronization: From single-layer to multi-layer networks.
    Ma C; Yang Q; Wu X; Lu JA
    Chaos; 2019 Dec; 29(12):123120. PubMed ID: 31893649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization in the Kuramoto model: a dynamical gradient network approach.
    Chen M; Shang Y; Zou Y; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):027101. PubMed ID: 18352156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization in adaptive weighted networks.
    Huang D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046208. PubMed ID: 17155154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental approach to the study of complex network synchronization using a single oscillator.
    Pisarchik AN; Jaimes-Reátegui R; Sevilla-Escoboza R; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):055202. PubMed ID: 19518511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.