These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 18233735)
1. Origin of chaos in soft interactions and signatures of nonergodicity. Beims MW; Manchein C; Rost JM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056203. PubMed ID: 18233735 [TBL] [Abstract][Full Text] [Related]
2. Soft wall effects on interacting particles in billiards. Oliveira HA; Manchein C; Beims MW Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046208. PubMed ID: 18999509 [TBL] [Abstract][Full Text] [Related]
3. Characterizing weak chaos using time series of Lyapunov exponents. da Silva RM; Manchein C; Beims MW; Altmann EG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772 [TBL] [Abstract][Full Text] [Related]
4. Stepwise structure of Lyapunov spectra for many-particle systems using a random matrix dynamics. Taniguchi T; Morriss GP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056202. PubMed ID: 12059675 [TBL] [Abstract][Full Text] [Related]
6. Chaos and ergodicity of two hard disks within a circular billiard. Sawada S; Taniguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022907. PubMed ID: 24032901 [TBL] [Abstract][Full Text] [Related]
7. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos. Pazó D; López JM; Politi A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750 [TBL] [Abstract][Full Text] [Related]
8. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
9. Lyapunov spectra of billiards with cylindrical scatterers: comparison with many-particle systems. de Wijn AS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026216. PubMed ID: 16196693 [TBL] [Abstract][Full Text] [Related]
11. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection. Karimi A; Paul MR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550 [TBL] [Abstract][Full Text] [Related]
12. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. Thiffeault JL; Boozer AH Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437 [TBL] [Abstract][Full Text] [Related]
13. Lyapunov spectrum of the many-dimensional dilute random Lorentz gas. de Wijn AS; Beijeren Hv Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036209. PubMed ID: 15524614 [TBL] [Abstract][Full Text] [Related]
14. Chaotic dynamics of one-dimensional systems with periodic boundary conditions. Kumar P; Miller BN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175 [TBL] [Abstract][Full Text] [Related]
15. Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics. Vannitsem S Chaos; 2017 Mar; 27(3):032101. PubMed ID: 28364758 [TBL] [Abstract][Full Text] [Related]
16. Goldstone modes in Lyapunov spectra of hard sphere systems. de Wijn AS; van Beijeren H Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016207. PubMed ID: 15324152 [TBL] [Abstract][Full Text] [Related]
17. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps. Inoue K Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209 [TBL] [Abstract][Full Text] [Related]
18. Statistics of finite-time Lyapunov exponents in a random time-dependent potential. Schomerus H; Titov M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066207. PubMed ID: 12513384 [TBL] [Abstract][Full Text] [Related]
19. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Grines EA; Kazakov A; Sataev IR Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377 [TBL] [Abstract][Full Text] [Related]