These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 18233743)
1. Targeting characteristic wave properties in reaction-diffusion systems by optimization of external forcing. Siehr J; Mommer MS; Slaby O; Lebiedz D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056211. PubMed ID: 18233743 [TBL] [Abstract][Full Text] [Related]
2. Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion. Zemskov EP; Tsyganov MA; Horsthemke W Phys Rev E; 2018 Jun; 97(6-1):062206. PubMed ID: 30011462 [TBL] [Abstract][Full Text] [Related]
3. Resonance tongues and patterns in periodically forced reaction-diffusion systems. Lin AL; Hagberg A; Meron E; Swinney HL Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718 [TBL] [Abstract][Full Text] [Related]
4. Control of spiral turbulence by periodic forcing in a reaction-diffusion system with gradients. Wu Y; Qiao C; Ouyang Q; Wang HL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036226. PubMed ID: 18517504 [TBL] [Abstract][Full Text] [Related]
5. Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection. Zemskov EP; Tsyganov MA; Ivanitsky GR; Horsthemke W Phys Rev E; 2022 Jan; 105(1-1):014207. PubMed ID: 35193304 [TBL] [Abstract][Full Text] [Related]
6. Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient. Qiao C; Wu Y; Lu X; Wang C; Ouyang Q; Wang H Chaos; 2008 Jun; 18(2):026109. PubMed ID: 18601511 [TBL] [Abstract][Full Text] [Related]
7. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion. Zemskov EP; Tsyganov MA; Horsthemke W Phys Rev E; 2017 Jan; 95(1-1):012203. PubMed ID: 28208357 [TBL] [Abstract][Full Text] [Related]
8. Periodic sequence of stabilized wave segments in an excitable medium. Zykov VS; Bodenschatz E Phys Rev E; 2018 Mar; 97(3-1):030201. PubMed ID: 29776052 [TBL] [Abstract][Full Text] [Related]
9. Density wave propagation of a wave train in a closed excitable medium. Suematsu NJ; Sato T; Motoike IN; Kashima K; Nakata S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046203. PubMed ID: 22181241 [TBL] [Abstract][Full Text] [Related]
10. Manipulation of self-aggregation patterns and waves in a reaction-diffusion system by optimal boundary control strategies. Lebiedz D; Brandt-Pollmann U Phys Rev Lett; 2003 Nov; 91(20):208301. PubMed ID: 14683405 [TBL] [Abstract][Full Text] [Related]
11. Wavy fronts in a hyperbolic FitzHugh-Nagumo system and the effects of cross diffusion. Zemskov EP; Tsyganov MA; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062917. PubMed ID: 26172782 [TBL] [Abstract][Full Text] [Related]
12. Wave propagation in a FitzHugh-Nagumo-type model with modified excitability. Zemskov EP; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026207. PubMed ID: 20866893 [TBL] [Abstract][Full Text] [Related]
13. Delay-induced wave instabilities in single-species reaction-diffusion systems. Otto A; Wang J; Radons G Phys Rev E; 2017 Nov; 96(5-1):052202. PubMed ID: 29347731 [TBL] [Abstract][Full Text] [Related]
14. McKean caricature of the FitzHugh-Nagumo model: traveling pulses in a discrete diffusive medium. Tonnelier A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036105. PubMed ID: 12689130 [TBL] [Abstract][Full Text] [Related]
16. Noise-induced excitation wave and its size distribution in coupled FitzHugh-Nagumo equations on a square lattice. Sakaguchi H Phys Rev E; 2024 Apr; 109(4-1):044211. PubMed ID: 38755797 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear waves in a quintic FitzHugh-Nagumo model with cross diffusion: Fronts, pulses, and wave trains. Zemskov EP; Tsyganov MA; Kassner K; Horsthemke W Chaos; 2021 Mar; 31(3):033141. PubMed ID: 33810726 [TBL] [Abstract][Full Text] [Related]
18. Traveling waves and global oscillations triggered by attractive molecular interactions in an excitable system. John K; Alonso S; Bär M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052913. PubMed ID: 25493864 [TBL] [Abstract][Full Text] [Related]
19. Speed of traveling fronts in a sigmoidal reaction-diffusion system. Zemskov EP; Kassner K; Tsyganov MA; Epstein IR Chaos; 2011 Mar; 21(1):013115. PubMed ID: 21456829 [TBL] [Abstract][Full Text] [Related]
20. Period doubling in a periodically forced Belousov-Zhabotinsky reaction. Marts B; Simpson DJ; Hagberg A; Lin AL Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026213. PubMed ID: 17930127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]