These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 18233754)

  • 1. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump.
    Gregersen MM; Olesen LH; Brask A; Hansen MF; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056305. PubMed ID: 18233754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control.
    Studer V; Pepin A; Chen Y; Ajdari A
    Analyst; 2004 Oct; 129(10):944-9. PubMed ID: 15457328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.
    Yuan Q; Wu J
    Biomed Microdevices; 2013 Feb; 15(1):125-33. PubMed ID: 22932955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: high pumping velocities induced by the external inductance at driving voltages below 5 V.
    Stubbe M; Gyurova A; Gimsa J
    Electrophoresis; 2013 Feb; 34(4):562-74. PubMed ID: 23161729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.
    Urbanski JP; Levitan JA; Burch DN; Thorsen T; Bazant MZ
    J Colloid Interface Sci; 2007 May; 309(2):332-41. PubMed ID: 17346735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.
    García-Sánchez P; Ramos A; Green NG; Morgan H
    Langmuir; 2008 Sep; 24(17):9361-9. PubMed ID: 18672919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AC frequency characteristics of coplanar impedance sensors as design parameters.
    Hong J; Yoon DS; Kim SK; Kim TS; Kim S; Pak EY; No K
    Lab Chip; 2005 Mar; 5(3):270-9. PubMed ID: 15726203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics.
    Huang CC; Bazant MZ; Thorsen T
    Lab Chip; 2010 Jan; 10(1):80-5. PubMed ID: 20024054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients.
    García-Sánchez P; Ramos A; González A; Green NG; Morgan H
    Langmuir; 2009 May; 25(9):4988-97. PubMed ID: 19320476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrical pumping approach to eliminate sample bias in capillary electrokinetic injection.
    Yang Y; Bao JJ
    Electrophoresis; 2007 Apr; 28(7):1063-71. PubMed ID: 17351892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel.
    Chen JK; Weng CN; Yang RJ
    Lab Chip; 2009 May; 9(9):1267-73. PubMed ID: 19370247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency tuning allows flow direction control in microfluidic networks with passive features.
    Jain R; Lutz B
    Lab Chip; 2017 May; 17(9):1552-1558. PubMed ID: 28350018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An AC electroosmotic micropump for circular chromatographic applications.
    Debesset S; Hayden CJ; Dalton C; Eijkel JC; Manz A
    Lab Chip; 2004 Aug; 4(4):396-400. PubMed ID: 15269811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A handy liquid metal based electroosmotic flow pump.
    Gao M; Gui L
    Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of an ac electro-osmotic pump with step microelectrodes.
    Kim BJ; Lee SH; Rezazadeh S; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056302. PubMed ID: 21728642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Parallel Manipulation of Single Cells Using Micronozzle Array Integrated with Bidirectional Electrokinetic Pumps.
    Nagai M; Kato K; Soga S; Santra TS; Shibata T
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.