These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 18233791)

  • 1. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the spin-2 Gross-Pitaevskii equation using exact nonlinear dynamics and symplectic composition.
    Symes LM; Blakie PB
    Phys Rev E; 2017 Jan; 95(1-1):013311. PubMed ID: 28208384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order modulation instability in nonlinear fiber optics.
    Erkintalo M; Hammani K; Kibler B; Finot C; Akhmediev N; Dudley JM; Genty G
    Phys Rev Lett; 2011 Dec; 107(25):253901. PubMed ID: 22243074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations.
    Bader P; Blanes S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046711. PubMed ID: 21599338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation.
    Gammal A; Frederico T; Tomio L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2421-4. PubMed ID: 11970045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap.
    Chin SA; Krotscheck E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036705. PubMed ID: 16241612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex families near a spectral edge in the Gross-Pitaevskii equation with a two-dimensional periodic potential.
    Dohnal T; Pelinovsky D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026605. PubMed ID: 22463347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulational instability of a modified Gross-Pitaevskii equation with higher-order nonlinearity.
    Qi XY; Xue JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):017601. PubMed ID: 23005569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
    Yan Z
    Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1989):20120059. PubMed ID: 23509385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation instability in nonlinear coupled resonator optical waveguides and photonic crystal waveguides.
    Huang CH; Lai YH; Cheng SC; Hsieh WF
    Opt Express; 2009 Feb; 17(3):1299-307. PubMed ID: 19188958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fourth-order Runge-Kutta in the interaction picture method for numerically solving the coupled nonlinear Schrodinger equation.
    Zhang Z; Chen L; Bao X
    Opt Express; 2010 Apr; 18(8):8261-76. PubMed ID: 20588672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
    Whitfield AJ; Johnson ER
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):051201. PubMed ID: 26066112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.
    Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular vibrations and noise effects on pattern formation in a molecular helix.
    Fouda HP; Tabi CB; Mohamadou A; Kofané TC
    J Phys Condens Matter; 2011 Sep; 23(37):375104. PubMed ID: 21878712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collapse, decay, and single-|k| turbulence from a generalized nonlinear Schrödinger equation.
    Cui S; Yu MY; Zhao D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053104. PubMed ID: 23767640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.