BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 18233870)

  • 21. Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries.
    Sassaroli A; Martelli F; Fantini S
    Appl Opt; 2009 Apr; 48(10):D62-73. PubMed ID: 19340125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a time-domain optical mammograph and first in vivo applications.
    Grosenick D; Wabnitz H; Rinneberg HH; Moesta KT; Schlag PM
    Appl Opt; 1999 May; 38(13):2927-43. PubMed ID: 18319875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray scattering from human breast tissues and breast-equivalent materials.
    Poletti ME; Gonçalves D; Mazzaro I
    Phys Med Biol; 2002 Jan; 47(1):47-63. PubMed ID: 11814227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues.
    Hielscher AH; Alcouffe RE; Barbour RL
    Phys Med Biol; 1998 May; 43(5):1285-302. PubMed ID: 9623656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical computed tomography in a turbid medium using early arriving photons.
    Chen K; Perelman LT; Zhang Q; Dasari RR; Feld MS
    J Biomed Opt; 2000 Apr; 5(2):144-54. PubMed ID: 10938778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional photon migration through voidlike regions and channels.
    Aydin ED
    Appl Opt; 2007 Dec; 46(34):8272-7. PubMed ID: 18059668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium.
    Cong W; Wang LV; Wang G
    Biomed Eng Online; 2004 May; 3(1):12. PubMed ID: 15125780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.
    Li X; Jiang H
    Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography.
    Nouizi F; Torregrossa M; Chabrier R; Poulet P
    Opt Express; 2011 Jun; 19(13):12843-54. PubMed ID: 21716527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments.
    Ebert B; Sukowski U; Grosenick D; Wabnitz H; Moesta KT; Licha K; Becker A; Semmler W; Schlag PM; Rinneberg H
    J Biomed Opt; 2001 Apr; 6(2):134-40. PubMed ID: 11375722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography.
    Yuan Z; Hu XH; Jiang H
    Phys Med Biol; 2009 Jan; 54(1):65-88. PubMed ID: 19060361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography.
    Tanifuji T; Hijikata M
    IEEE Trans Med Imaging; 2002 Feb; 21(2):181-4. PubMed ID: 11929105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.
    Sturgeon GM; Kiarashi N; Lo JY; Samei E; Segars WP
    Med Phys; 2016 May; 43(5):2207. PubMed ID: 27147333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms.
    Wassermann B; Kummrow A; Moesta K; Grosenick D; Mucke J; Wabnitz H; Moller M; Macdonald R; Schlag P; Rinneberg H
    Opt Express; 2005 Oct; 13(21):8571-83. PubMed ID: 19498887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental test of theoretical models for time-resolved reflectance.
    Cubeddu R; Pifferi A; Taroni P; Torricelli A; Valentini G
    Med Phys; 1996 Sep; 23(9):1625-33. PubMed ID: 8892260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M; Arridge SR
    Med Phys; 1997 Jun; 24(6):895-902. PubMed ID: 9198025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Average glandular dose conversion coefficients for segmented breast voxel models.
    Zankl M; Fill U; Hoeschen C; Panzer W; Regulla D
    Radiat Prot Dosimetry; 2005; 114(1-3):410-4. PubMed ID: 15933148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.