These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18233894)

  • 1. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water.
    Liu JL; Feng XQ; Wang GF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066103. PubMed ID: 18233894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buoyancy of a thin plate pressing a floating oil film on water.
    Ji XY; Feng XQ
    Langmuir; 2013 Jun; 29(22):6562-72. PubMed ID: 23659380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of flexibility in the water repellency of water strider legs: theory and experiment.
    Ji XY; Wang JW; Feng XQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021607. PubMed ID: 22463223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.
    Feng XQ; Gao X; Wu Z; Jiang L; Zheng QS
    Langmuir; 2007 Apr; 23(9):4892-6. PubMed ID: 17385899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation.
    Su Y; Ji B; Huang Y; Hwang KC
    Langmuir; 2010 Dec; 26(24):18926-37. PubMed ID: 21086997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why superhydrophobicity is crucial for a water-jumping microrobot? Experimental and theoretical investigations.
    Zhao J; Zhang X; Chen N; Pan Q
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3706-11. PubMed ID: 22724498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force.
    Liu X; Gao J; Xue Z; Chen L; Lin L; Jiang L; Wang S
    ACS Nano; 2012 Jun; 6(6):5614-20. PubMed ID: 22607241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.
    Zhang X; Zhao J; Zhu Q; Chen N; Zhang M; Pan Q
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2630-6. PubMed ID: 21650460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.
    Ding Y; Xu S; Zhang Y; Wang AC; Wang MH; Xiu Y; Wong CP; Wang ZL
    Nanotechnology; 2008 Sep; 19(35):355708. PubMed ID: 21828862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floating and Sinking of a Pair of Spheres at a Liquid-Fluid Interface.
    Cooray H; Cicuta P; Vella D
    Langmuir; 2017 Feb; 33(6):1427-1436. PubMed ID: 28093906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Dynamic Force Acted on Water Strider Leg Jumping Upward by the PVDF Film Sensor.
    Zhang L; Zhao M; Wang Z; Li Y; Huang Y; Zheng Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider.
    Watson GS; Cribb BW; Watson JA
    Acta Biomater; 2010 Oct; 6(10):4060-4. PubMed ID: 20417737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion forces and contact angles of water strider legs.
    Wei PJ; Chen SC; Lin JF
    Langmuir; 2009 Feb; 25(3):1526-8. PubMed ID: 19099522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floating behavior of hydrophobic glass spheres.
    Liu X; Wang X; Liang Y; Zhou F
    J Colloid Interface Sci; 2009 Aug; 336(2):743-9. PubMed ID: 19464018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the shape of a hydrostatic meniscus attached to a corrugated plate or wavy cylinder.
    Hill AI; Pozrikidis C
    J Colloid Interface Sci; 2011 Apr; 356(2):763-74. PubMed ID: 21315363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-field investigation of rod eutectic morphologies under geometrical confinement.
    Şerefoğlu M; Napolitano RE; Plapp M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011614. PubMed ID: 21867189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meniscus and viscous forces during separation of hydrophilic and hydrophobic smooth/rough surfaces with symmetric and asymmetric contact angles.
    Cai S; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1627-47. PubMed ID: 18192167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-removal of condensed water on the legs of water striders.
    Wang Q; Yao X; Liu H; Quéré D; Jiang L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9247-52. PubMed ID: 26170300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.
    Wu X; Shi G
    J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.