These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18233898)

  • 1. Stopping and initiation of a chemical pulse at the interface of excitable media with different diffusivity.
    Miyazaki J; Kinoshita S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066201. PubMed ID: 18233898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of a chemical wave to local pulse irradiation in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Nakata S; Suzuki S; Ezaki T; Kitahata H; Nishi K; Nishiura Y
    Phys Chem Chem Phys; 2015 Apr; 17(14):9148-52. PubMed ID: 25757627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional mechanism for reentrant activity generation in excitable media.
    Sendiña-Nadal I; de Castro M; Sagués F; Gómez-Gesteira M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016215. PubMed ID: 12241469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation failure dynamics of wave trains in excitable systems.
    Manz N; Ginn BT; Steinbock O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066218. PubMed ID: 16906957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density wave propagation of a wave train in a closed excitable medium.
    Suematsu NJ; Sato T; Motoike IN; Kashima K; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046203. PubMed ID: 22181241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Array-enhanced coherence resonance and phase synchronization in a two-dimensional array of excitable chemical oscillators.
    Okano T; Kitagawa A; Miyakawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046201. PubMed ID: 17995076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field.
    Li BW; Cai MC; Zhang H; Panfilov AV; Dierckx H
    J Chem Phys; 2014 May; 140(18):184901. PubMed ID: 24832300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-induced spatiotemporal dynamics in a linear array of excitable chemical oscillators.
    Miyakawa K; Okano T; Tanaka T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066202. PubMed ID: 16089844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Front propagation and mode-locking in an advection-reaction-diffusion system.
    Paoletti MS; Solomon TH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046204. PubMed ID: 16383509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical wave propagation preserved on an inhibitory field in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Nakata S; Ezaki T; Ikura YS; Kitahata H
    J Phys Chem A; 2013 Oct; 117(41):10615-8. PubMed ID: 24044665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of unidirectional pulse propagation in an excitable medium with asymmetric heterogeneity.
    Teramoto T; Yuan X; Bär M; Nishiura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046205. PubMed ID: 19518310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of spiral formation in heterogeneous discretized excitable media.
    Kinoshita S; Iwamoto M; Tateishi K; Suematsu NJ; Ueyama D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062815. PubMed ID: 23848737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On propagation failure in one- and two-dimensional excitable media.
    Gottwald GA; Kramer L
    Chaos; 2004 Sep; 14(3):855-63. PubMed ID: 15446996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation failures, breathing pulses, and backfiring in an excitable reaction-diffusion system.
    Manz N; Steinbock O
    Chaos; 2006 Sep; 16(3):037112. PubMed ID: 17014246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival versus collapse: abrupt drop of excitability kills the traveling pulse, while gradual change results in adaptation.
    Tanaka M; Nagahara H; Kitahata H; Krinsky V; Agladze K; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016205. PubMed ID: 17677541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow.
    von Kameke A; Huhn F; Fernández-García G; Muñuzuri AP; Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066211. PubMed ID: 20866505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction.
    Zhang GM; Wong I; Chou MT; Zhao X
    J Chem Phys; 2012 Apr; 136(16):164108. PubMed ID: 22559471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric-field-controlled unpinning of scroll waves.
    Jiménez ZA; Zhang Z; Steinbock O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052918. PubMed ID: 24329342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady motion of hairpin-shaped vortex filaments in excitable systems.
    Dutta S; Steinbock O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):055202. PubMed ID: 20866287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigating complex labyrinths: optimal paths from chemical waves.
    Steinbock O; Tóth A; Showalter K
    Science; 1995 Feb; 267(5199):868-71. PubMed ID: 17813917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.