These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18233915)

  • 1. Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control.
    Kanevsky Y; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066305. PubMed ID: 18233915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jumping solitary waves in an autonomous reaction-diffusion system with subcritical wave instability.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Chem Chem Phys; 2006 Oct; 8(40):4647-51. PubMed ID: 17047760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback control of subcritical oscillatory instabilities.
    Golovin AA; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046212. PubMed ID: 16711922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback control of subcritical Turing instability with zero mode.
    Golovin AA; Kanevsky Y; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046218. PubMed ID: 19518323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced nonlinear Schrödinger equation with arbitrary nonlinearity.
    Cooper F; Khare A; Quintero NR; Mertens FG; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046607. PubMed ID: 22680598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turing pattern formation in the Brusselator system with nonlinear diffusion.
    Gambino G; Lombardo MC; Sammartino M; Sciacca V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control.
    Rubinstein BY; Nepomnyashchy AA; Golovin AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046213. PubMed ID: 17500984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Dirac equation solitary waves in external fields.
    Mertens FG; Quintero NR; Cooper F; Khare A; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046602. PubMed ID: 23214703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation.
    Tsoy EN; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials.
    Mertens FG; Cooper F; Arévalo E; Khare A; Saxena A; Bishop AR
    Phys Rev E; 2016 Sep; 94(3-1):032213. PubMed ID: 27739801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling ion channel density waves affected by a conservation law.
    Peter R; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016206. PubMed ID: 16907176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulational instability and unstable patterns in the discrete complex cubic Ginzburg-Landau equation with first and second neighbor couplings.
    Mohamadou A; Jiotsa AK; Kofané TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036220. PubMed ID: 16241561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrodinger equation.
    Yang R; Li L; Hao R; Li Z; Zhou G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036616. PubMed ID: 15903614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of gravity-capillary solitary waves on shallow water based on the fifth-order Kadomtsev-Petviashvili equation.
    Cho Y
    Phys Rev E; 2018 Jul; 98(1-1):012213. PubMed ID: 30110743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations.
    Zhu Y; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036605. PubMed ID: 17500807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional dynamics of coupled oscillators with long-range interaction.
    Tarasov VE; Zaslavsky GM
    Chaos; 2006 Jun; 16(2):023110. PubMed ID: 16822013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line.
    Kengne E; Lakhssassi A; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062915. PubMed ID: 26172780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management.
    Gaididei YB; Christiansen PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026610. PubMed ID: 18850965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation.
    Sánchez-Rey B; Johansson M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036627. PubMed ID: 15903625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback-induced oscillations in one-dimensional colloidal transport.
    Lichtner K; Pototsky A; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051405. PubMed ID: 23214782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.