BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18233959)

  • 1. C-terminal truncation of the peroxiredoxin Tpx1 decreases its sensitivity for hydrogen peroxide without compromising its role in signal transduction.
    Jara M; Vivancos AP; Hidalgo E
    Genes Cells; 2008 Feb; 13(2):171-9. PubMed ID: 18233959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle.
    Calvo IA; Boronat S; Domènech A; García-Santamarina S; Ayté J; Hidalgo E
    Cell Rep; 2013 Dec; 5(5):1413-24. PubMed ID: 24316080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast.
    Jara M; Vivancos AP; Calvo IA; Moldón A; Sansó M; Hidalgo E
    Mol Biol Cell; 2007 Jun; 18(6):2288-95. PubMed ID: 17409354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway.
    Vivancos AP; Castillo EA; Biteau B; Nicot C; Ayté J; Toledano MB; Hidalgo E
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8875-80. PubMed ID: 15956211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide.
    Bozonet SM; Findlay VJ; Day AM; Cameron J; Veal EA; Morgan BA
    J Biol Chem; 2005 Jun; 280(24):23319-27. PubMed ID: 15824112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic approach to study H2O2 scavenging in fission yeast--distinct roles of peroxiredoxin and catalase.
    Paulo E; García-Santamarina S; Calvo IA; Carmona M; Boronat S; Domènech A; Ayté J; Hidalgo E
    Mol Microbiol; 2014 Apr; 92(2):246-57. PubMed ID: 24521463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival.
    Day AM; Brown JD; Taylor SR; Rand JD; Morgan BA; Veal EA
    Mol Cell; 2012 Feb; 45(3):398-408. PubMed ID: 22245228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase.
    Veal EA; Findlay VJ; Day AM; Bozonet SM; Evans JM; Quinn J; Morgan BA
    Mol Cell; 2004 Jul; 15(1):129-39. PubMed ID: 15225554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways.
    Vivancos AP; Jara M; Zuin A; Sansó M; Hidalgo E
    Mol Genet Genomics; 2006 Dec; 276(6):495-502. PubMed ID: 17043891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein.
    Brown JD; Day AM; Taylor SR; Tomalin LE; Morgan BA; Veal EA
    Cell Rep; 2013 Dec; 5(5):1425-35. PubMed ID: 24268782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using in vivo oxidation status of one- and two-component redox relays to determine H
    Domènech A; Ayté J; Antunes F; Hidalgo E
    BMC Biol; 2018 Jun; 16(1):61. PubMed ID: 29859088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide.
    Veal EA; Tomalin LE; Morgan BA; Day AM
    Biochem Soc Trans; 2014 Aug; 42(4):909-16. PubMed ID: 25109978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemeprotein Tpx1 interacts with cell-surface heme transporter Str3 in Schizosaccharomyces pombe.
    Normant V; Brault A; Avino M; Mourer T; Vahsen T; Beaudoin J; Labbé S
    Mol Microbiol; 2021 Apr; 115(4):699-722. PubMed ID: 33140466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration.
    Vivancos AP; Castillo EA; Jones N; Ayté J; Hidalgo E
    Mol Microbiol; 2004 Jun; 52(5):1427-35. PubMed ID: 15165244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible thiol oxidation in the H2O2-dependent activation of the transcription factor Pap1.
    Calvo IA; Ayté J; Hidalgo E
    J Cell Sci; 2013 May; 126(Pt 10):2279-84. PubMed ID: 23525001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
    Wood ZA; Poole LB; Karplus PA
    Science; 2003 Apr; 300(5619):650-3. PubMed ID: 12714747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe.
    Rodríguez-Gabriel MA; Russell P
    Eukaryot Cell; 2005 Aug; 4(8):1396-402. PubMed ID: 16087744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
    Si M; Wang T; Pan J; Lin J; Chen C; Wei Y; Lu Z; Wei G; Shen X
    Antioxid Redox Signal; 2017 Jan; 26(1):1-14. PubMed ID: 27324811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
    Truzzi DR; Coelho FR; Paviani V; Alves SV; Netto LES; Augusto O
    J Biol Chem; 2019 Sep; 294(38):14055-14067. PubMed ID: 31366734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress response pathways: Fission yeast as archetype.
    Papadakis MA; Workman CT
    Crit Rev Microbiol; 2015; 41(4):520-35. PubMed ID: 24576188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.