BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 18234609)

  • 1. A new pulse sequence for "fast recovery" fast-scan NMR imaging.
    Iwaoka H; Sugiyama T; Matsuura H; Fujino K
    IEEE Trans Med Imaging; 1984; 3(1):41-6. PubMed ID: 18234609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization.
    Hsu JJ; Lowe IJ
    J Magn Reson; 2004 Aug; 169(2):270-8. PubMed ID: 15261622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging of musculoskeletal lesions: comparison of three fat-saturation pulse sequences.
    Pui MH; Goh PS; Choo HF; Fok EC
    Australas Radiol; 1997 May; 41(2):99-102. PubMed ID: 9153802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal pulse sequences for magnetic resonance imaging-computing accurate t1, t2, and proton density images.
    Iwaoka H; Hirata T; Matsuura H
    IEEE Trans Med Imaging; 1987; 6(4):360-9. PubMed ID: 18244046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin lattice relaxation time measurements in two-dimensional nuclear magnetic resonance imaging: corrections for plane selection and pulse sequence.
    Rosen BR; Pykett IL; Brady TJ
    J Comput Assist Tomogr; 1984 Apr; 8(2):195-9. PubMed ID: 6323554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method.
    Springer F; Steidle G; Martirosian P; Syha R; Claussen CD; Schick F
    Invest Radiol; 2011 Oct; 46(10):610-7. PubMed ID: 21577126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions.
    Al-Saeed O; Ismail M; Athyal RP; Rudwan M; Khafajee S
    J Med Imaging Radiat Oncol; 2009 Aug; 53(4):366-72. PubMed ID: 19695043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of susceptibility-related image contrast by spin-lock techniques.
    Martirosian P; Rommel E; Schick F; Deimling M
    Magn Reson Imaging; 2008 Dec; 26(10):1381-7. PubMed ID: 18586432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of in-pulse transverse relaxation in 3D ultrashort echo time sequences: analytical derivation, comparison to numerical simulation and experimental application at 3T.
    Springer F; Steidle G; Martirosian P; Claussen CD; Schick F
    J Magn Reson; 2010 Sep; 206(1):88-96. PubMed ID: 20637661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin echo SPI methods for quantitative analysis of fluids in porous media.
    Li L; Han H; Balcom BJ
    J Magn Reson; 2009 Jun; 198(2):252-60. PubMed ID: 19307140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WE-G-217A-01: Fast Recovery Driven Equilibrium with Automated Switching to Avoid Artifacts.
    Edmonson H; Bernstein M
    Med Phys; 2012 Jun; 39(6Part28):3975. PubMed ID: 28519647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of focal liver lesions: fast-recovery fast spin echo T2-weighted MR imaging.
    Akin O; Schwartz LH; Welber A; Maier CF; Decorato DR; Panicek DM
    Clin Imaging; 2006; 30(5):322-5. PubMed ID: 16919552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?
    Alibek S; Adamietz B; Cavallaro A; Stemmer A; Anders K; Kramer M; Bautz W; Staatz G
    Acad Radiol; 2008 Aug; 15(8):986-95. PubMed ID: 18620119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculated T1 images derived from a partial saturation-inversion recovery pulse sequence with adiabatic fast passage.
    Hardy CJ; Edelstein WA; Vatis D; Harms R; Adams WJ
    Magn Reson Imaging; 1985; 3(2):107-16. PubMed ID: 4033374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium signal intensity mapping, an MRI method for fast mapping of longitudinal relaxation rates and for image enhancement.
    Surányi P; Kiss P; Ruzsics B; Brott BC; Simor T; Elgavish GA
    Magn Reson Imaging; 2007 Jun; 25(5):641-51. PubMed ID: 17540275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centric scan SPRITE for spin density imaging of short relaxation time porous materials.
    Chen Q; Halse M; Balcom BJ
    Magn Reson Imaging; 2005 Feb; 23(2):263-6. PubMed ID: 15833624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal, noise, and contrast in nuclear magnetic resonance (NMR) imaging.
    Edelstein WA; Bottomley PA; Hart HR; Smith LS
    J Comput Assist Tomogr; 1983 Jun; 7(3):391-401. PubMed ID: 6841698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility-resistant variable-flip-angle turbo spin echo imaging for reliable estimation of cortical thickness: a feasibility study.
    Lee H; Kim EY; Yang KS; Park J
    Neuroimage; 2012 Jan; 59(1):377-88. PubMed ID: 21840400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.