These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. Indovina I; Macaluso E Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797 [TBL] [Abstract][Full Text] [Related]
6. Mapping multiple visual areas in the human brain with a short fMRI sequence. Stiers P; Peeters R; Lagae L; Van Hecke P; Sunaert S Neuroimage; 2006 Jan; 29(1):74-89. PubMed ID: 16154766 [TBL] [Abstract][Full Text] [Related]
7. Neural mechanisms of visual attention: object-based selection of a region in space. Arrington CM; Carr TH; Mayer AR; Rao SM J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651 [TBL] [Abstract][Full Text] [Related]
8. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Serences JT; Yantis S Cereb Cortex; 2007 Feb; 17(2):284-93. PubMed ID: 16514108 [TBL] [Abstract][Full Text] [Related]
9. Attention mechanisms in visual search -- an fMRI study. Leonards U; Sunaert S; Van Hecke P; Orban GA J Cogn Neurosci; 2000; 12 Suppl 2():61-75. PubMed ID: 11506648 [TBL] [Abstract][Full Text] [Related]
11. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076 [TBL] [Abstract][Full Text] [Related]
12. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Corbetta M; Kincade JM; Ollinger JM; McAvoy MP; Shulman GL Nat Neurosci; 2000 Mar; 3(3):292-7. PubMed ID: 10700263 [TBL] [Abstract][Full Text] [Related]
13. Deficits in subprocesses of visual feature search after frontal, parietal, and temporal brain lesions--a modeling approach. Müller-Plath G; Ott DV; Pollmann S J Cogn Neurosci; 2010 Jul; 22(7):1399-424. PubMed ID: 19445605 [TBL] [Abstract][Full Text] [Related]
14. Extracting 3D from motion: differences in human and monkey intraparietal cortex. Vanduffel W; Fize D; Peuskens H; Denys K; Sunaert S; Todd JT; Orban GA Science; 2002 Oct; 298(5592):413-5. PubMed ID: 12376701 [TBL] [Abstract][Full Text] [Related]
15. Anterior intraparietal sulcus is sensitive to bottom-up attention driven by stimulus salience. Geng JJ; Mangun GR J Cogn Neurosci; 2009 Aug; 21(8):1584-601. PubMed ID: 18752405 [TBL] [Abstract][Full Text] [Related]
16. Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Sterzer P; Russ MO; Preibisch C; Kleinschmidt A Neuroimage; 2002 Apr; 15(4):908-16. PubMed ID: 11906231 [TBL] [Abstract][Full Text] [Related]
17. A parametric fMRI study of overt and covert shifts of visuospatial attention. Beauchamp MS; Petit L; Ellmore TM; Ingeholm J; Haxby JV Neuroimage; 2001 Aug; 14(2):310-21. PubMed ID: 11467905 [TBL] [Abstract][Full Text] [Related]
18. Imagery of a moving object: the role of occipital cortex and human MT/V5+. Kaas A; Weigelt S; Roebroeck A; Kohler A; Muckli L Neuroimage; 2010 Jan; 49(1):794-804. PubMed ID: 19646536 [TBL] [Abstract][Full Text] [Related]