These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18234813)

  • 21. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral diffusion in a discrete fluid membrane with immobile particles.
    Kalay Z; Fujiwara TK; Otaka A; Kusumi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022724. PubMed ID: 25353525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chirality-induced budding: a raft-mediated mechanism for endocytosis and morphology of caveolae?
    Sarasij RC; Mayor S; Rao M
    Biophys J; 2007 May; 92(9):3140-58. PubMed ID: 17237196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperative wrapping of nanoparticles by membrane tubes.
    Raatz M; Lipowsky R; Weikl TR
    Soft Matter; 2014 May; 10(20):3570-7. PubMed ID: 24658648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design principles for robust vesiculation in clathrin-mediated endocytosis.
    Hassinger JE; Oster G; Drubin DG; Rangamani P
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1118-E1127. PubMed ID: 28126722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Balancing torques in membrane-mediated interactions: exact results and numerical illustrations.
    Müller MM; Deserno M; Guven J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011921. PubMed ID: 17677508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles.
    Decuzzi P; Ferrari M
    Biomaterials; 2007 Jun; 28(18):2915-22. PubMed ID: 17363051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics.
    Li Y; Yue T; Yang K; Zhang X
    Biomaterials; 2012 Jun; 33(19):4965-73. PubMed ID: 22483010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2012 Aug; 33(23):5798-802. PubMed ID: 22607914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endocytosis.
    Mukherjee S; Ghosh RN; Maxfield FR
    Physiol Rev; 1997 Jul; 77(3):759-803. PubMed ID: 9234965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of receptor-mediated endocytosis in the formation of vaccinia virus extracellular enveloped particles.
    Husain M; Moss B
    J Virol; 2005 Apr; 79(7):4080-9. PubMed ID: 15767409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis.
    Gupta AK; Berry C; Gupta M; Curtis A
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):255-61. PubMed ID: 15376916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of particle uptake, encapsulation, and localization in cancer cells on intracellular applications.
    Gal N; Massalha S; Samuelly-Nafta O; Weihs D
    Med Eng Phys; 2015 May; 37(5):478-83. PubMed ID: 25862332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleation of membrane adhesions.
    Zhang CZ; Wang ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021906. PubMed ID: 18352050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of particle design on cellular internalization pathways.
    Gratton SE; Ropp PA; Pohlhaus PD; Luft JC; Madden VJ; Napier ME; DeSimone JM
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11613-8. PubMed ID: 18697944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.