These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18234851)
1. Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Okamoto F; Kajiya H; Toh K; Uchida S; Yoshikawa M; Sasaki S; Kido MA; Tanaka T; Okabe K Am J Physiol Cell Physiol; 2008 Mar; 294(3):C693-701. PubMed ID: 18234851 [TBL] [Abstract][Full Text] [Related]
2. Expression of mouse osteoclast K-Cl Co-transporter-1 and its role during bone resorption. Kajiya H; Okamoto F; Li JP; Nakao A; Okabe K J Bone Miner Res; 2006 Jul; 21(7):984-92. PubMed ID: 16813519 [TBL] [Abstract][Full Text] [Related]
3. Antibodies against ClC7 inhibit extracellular acidification-induced Cl⁻ currents and bone resorption activity in mouse osteoclasts. Ohgi K; Okamoto F; Kajiya H; Sakagami R; Okabe K Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan; 383(1):79-90. PubMed ID: 21061117 [TBL] [Abstract][Full Text] [Related]
4. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Weinert S; Jabs S; Supanchart C; Schweizer M; Gimber N; Richter M; Rademann J; Stauber T; Kornak U; Jentsch TJ Science; 2010 Jun; 328(5984):1401-3. PubMed ID: 20430974 [TBL] [Abstract][Full Text] [Related]
5. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Kornak U; Kasper D; Bösl MR; Kaiser E; Schweizer M; Schulz A; Friedrich W; Delling G; Jentsch TJ Cell; 2001 Jan; 104(2):205-15. PubMed ID: 11207362 [TBL] [Abstract][Full Text] [Related]
6. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7. Henriksen K; Gram J; Neutzsky-Wulff AV; Jensen VK; Dziegiel MH; Bollerslev J; Karsdal MA Biochem Biophys Res Commun; 2009 Jan; 378(4):804-9. PubMed ID: 19070589 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of ClC7 Cl- channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hClcn7 gene-expressing cells. Kajiya H; Okamoto F; Ohgi K; Nakao A; Fukushima H; Okabe K Pflugers Arch; 2009 Oct; 458(6):1049-59. PubMed ID: 19543743 [TBL] [Abstract][Full Text] [Related]
8. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion. Supanchart C; Wartosch L; Schlack C; Kühnisch J; Felsenberg D; Fuhrmann JC; de Vernejoul MC; Jentsch TJ; Kornak U Bone; 2014 Jan; 58():92-102. PubMed ID: 24103576 [TBL] [Abstract][Full Text] [Related]
9. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. Hara-Chikuma M; Yang B; Sonawane ND; Sasaki S; Uchida S; Verkman AS J Biol Chem; 2005 Jan; 280(2):1241-7. PubMed ID: 15504734 [TBL] [Abstract][Full Text] [Related]
10. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment. Schaller S; Henriksen K; Sørensen MG; Karsdal MA Drug News Perspect; 2005 Oct; 18(8):489-95. PubMed ID: 16391718 [TBL] [Abstract][Full Text] [Related]
11. Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization. Guo J; Bervoets TJ; Henriksen K; Everts V; Bronckers AL Cell Tissue Res; 2016 Feb; 363(2):361-70. PubMed ID: 26346547 [TBL] [Abstract][Full Text] [Related]
12. Direct endosomal acidification by the outwardly rectifying CLC-5 Cl(-)/H(+) exchanger. Smith AJ; Lippiat JD J Physiol; 2010 Jun; 588(Pt 12):2033-45. PubMed ID: 20421284 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the bone phenotype in ClC-7-deficient mice. Neutzsky-Wulff AV; Karsdal MA; Henriksen K Calcif Tissue Int; 2008 Dec; 83(6):425-37. PubMed ID: 18958510 [TBL] [Abstract][Full Text] [Related]
14. Cell biology and physiology of CLC chloride channels and transporters. Stauber T; Weinert S; Jentsch TJ Compr Physiol; 2012 Jul; 2(3):1701-44. PubMed ID: 23723021 [TBL] [Abstract][Full Text] [Related]
15. CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. Stauber T; Wartosch L; Vishnolia S; Schulz A; Kornak U Bone; 2023 Mar; 168():116639. PubMed ID: 36513280 [TBL] [Abstract][Full Text] [Related]
16. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Graves AR; Curran PK; Smith CL; Mindell JA Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189 [TBL] [Abstract][Full Text] [Related]
17. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274 [TBL] [Abstract][Full Text] [Related]
18. Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Henriksen K; Gram J; Schaller S; Dahl BH; Dziegiel MH; Bollerslev J; Karsdal MA Am J Pathol; 2004 May; 164(5):1537-45. PubMed ID: 15111300 [TBL] [Abstract][Full Text] [Related]
19. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474 [TBL] [Abstract][Full Text] [Related]
20. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Henriksen K; Sørensen MG; Jensen VK; Dziegiel MH; Nosjean O; Karsdal MA Calcif Tissue Int; 2008 Sep; 83(3):230-42. PubMed ID: 18787885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]