BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18234893)

  • 1. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.
    Huchzermeyer C; Albus K; Gabriel HJ; Otáhal J; Taubenberger N; Heinemann U; Kovács R; Kann O
    J Neurosci; 2008 Jan; 28(5):1153-62. PubMed ID: 18234893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria.
    Kann O; Huchzermeyer C; Kovács R; Wirtz S; Schuelke M
    Brain; 2011 Feb; 134(Pt 2):345-58. PubMed ID: 21183487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network.
    Huchzermeyer C; Berndt N; Holzhütter HG; Kann O
    J Cereb Blood Flow Metab; 2013 Feb; 33(2):263-71. PubMed ID: 23168532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous monitoring of tissue PO2 and NADH fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices.
    Galeffi F; Somjen GG; Foster KA; Turner DA
    J Cereb Blood Flow Metab; 2011 Feb; 31(2):626-39. PubMed ID: 20736960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices.
    Berndt N; Rösner J; Haq RU; Kann O; Kovács R; Holzhütter HG; Spies C; Liotta A
    Arch Toxicol; 2018 Oct; 92(10):3191-3205. PubMed ID: 30143847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
    Hájos N; Ellender TJ; Zemankovics R; Mann EO; Exley R; Cragg SJ; Freund TF; Paulsen O
    Eur J Neurosci; 2009 Jan; 29(2):319-27. PubMed ID: 19200237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():13-31. PubMed ID: 1432706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro.
    Mann EO; Suckling JM; Hajos N; Greenfield SA; Paulsen O
    Neuron; 2005 Jan; 45(1):105-17. PubMed ID: 15629706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized temporally deconvolved Ca²⁺ imaging allows identification of spatiotemporal activity patterns of CA1 hippocampal ensembles.
    Pfeiffer T; Draguhn A; Reichinnek S; Both M
    Neuroimage; 2014 Jul; 94():239-249. PubMed ID: 24650598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays.
    Zhu G; Li X; Pu J; Chen W; Luo Q
    Biomed Microdevices; 2010 Feb; 12(1):153-8. PubMed ID: 19937128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor-dependent high-frequency network oscillations (100-300 Hz) in rat hippocampal slices.
    Papatheodoropoulos C
    Neurosci Lett; 2007 Mar; 414(3):197-202. PubMed ID: 17316998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro.
    Traub RD; Bibbig A; LeBeau FE; Buhl EH; Whittington MA
    Annu Rev Neurosci; 2004; 27():247-78. PubMed ID: 15217333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.
    Compte A; Reig R; Descalzo VF; Harvey MA; Puccini GD; Sanchez-Vives MV
    J Neurosci; 2008 Dec; 28(51):13828-44. PubMed ID: 19091973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network mechanisms of gamma oscillations in the CA3 region of the hippocampus.
    Hájos N; Paulsen O
    Neural Netw; 2009 Oct; 22(8):1113-9. PubMed ID: 19683412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-specific contribution to gamma oscillations.
    Caillard O; Debanne D
    J Physiol; 2010 Mar; 588(Pt 5):751. PubMed ID: 20194134
    [No Abstract]   [Full Text] [Related]  

  • 16. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment.
    Brown JT; Davies CH; Randall AD
    Eur J Neurosci; 2007 May; 25(10):2982-90. PubMed ID: 17561812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia.
    Harrison DK; Fasching M; Fontana-Ayoub M; Gnaiger E
    J Appl Physiol (1985); 2015 Nov; 119(10):1210-8. PubMed ID: 26251509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of 2-APB on the time-frequency distributions of gamma oscillations in rat hippocampal slices.
    Akay YM; Dragomir A; Wu J; Akay M
    J Neural Eng; 2009 Oct; 6(5):056006. PubMed ID: 19717894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.
    Hájos N; Pálhalmi J; Mann EO; Németh B; Paulsen O; Freund TF
    J Neurosci; 2004 Oct; 24(41):9127-37. PubMed ID: 15483131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures.
    Fischer Y; Wittner L; Freund TF; Gähwiler BH
    J Physiol; 2002 Mar; 539(Pt 3):857-68. PubMed ID: 11897855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.