These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 18235979)
61. Two plant bacteria, S. meliloti and Ca. Liberibacter asiaticus, share functional znuABC homologues that encode for a high affinity zinc uptake system. Vahling-Armstrong CM; Zhou H; Benyon L; Morgan JK; Duan Y PLoS One; 2012; 7(5):e37340. PubMed ID: 22655039 [TBL] [Abstract][Full Text] [Related]
62. The eff-482 locus of Sinorhizobium meliloti CXM1-105 that influences symbiotic effectiveness consists of three genes encoding an endoglycanase, a transcriptional regulator and an adenylate cyclase. Sharypova LA; Yurgel SN; Keller M; Simarov BV; Pühler A; Becker A Mol Gen Genet; 1999 Jul; 261(6):1032-44. PubMed ID: 10485295 [TBL] [Abstract][Full Text] [Related]
63. A protein involved in stabilization of a large non-symbiotic plasmid of Rhizobium meliloti shows homology to eukaryotic cytoskeletal proteins and DNA-binding proteins. Mercado-Blanco J; Olivares J Gene; 1994 Feb; 139(1):133-4. PubMed ID: 7906665 [TBL] [Abstract][Full Text] [Related]
64. Response of Sinorhizobium meliloti to elevated concentrations of cadmium and zinc. Rossbach S; Mai DJ; Carter EL; Sauviac L; Capela D; Bruand C; de Bruijn FJ Appl Environ Microbiol; 2008 Jul; 74(13):4218-21. PubMed ID: 18469129 [TBL] [Abstract][Full Text] [Related]
66. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. Peck MC; Fisher RF; Bliss R; Long SR J Bacteriol; 2013 Aug; 195(16):3714-23. PubMed ID: 23772067 [TBL] [Abstract][Full Text] [Related]
67. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Maddocks SE; Oyston PCF Microbiology (Reading); 2008 Dec; 154(Pt 12):3609-3623. PubMed ID: 19047729 [TBL] [Abstract][Full Text] [Related]
68. Czc/cnr efflux: a three-component chemiosmotic antiport pathway with a 12-transmembrane-helix protein. Dong Q; Mergeay M Mol Microbiol; 1994 Oct; 14(1):185-7. PubMed ID: 7830556 [No Abstract] [Full Text] [Related]
69. Reciprocal domain evolution within a transactivator in a restricted sequence space. Juarez K; Flores H; Dávila S; Olvera L; González V; Morett E Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3314-8. PubMed ID: 10716734 [TBL] [Abstract][Full Text] [Related]
70. Control of gluconate utilization in Sinorhizobium meliloti. Steele TT; Fowler CW; Griffitts JS J Bacteriol; 2009 Feb; 191(4):1355-8. PubMed ID: 19060150 [TBL] [Abstract][Full Text] [Related]
71. Luteolin and GroESL modulate in vitro activity of NodD. Yeh KC; Peck MC; Long SR J Bacteriol; 2002 Jan; 184(2):525-30. PubMed ID: 11751831 [TBL] [Abstract][Full Text] [Related]
72. Analysis of CenKR essentiality in Sinorhizobium meliloti and its activity at a target gene promoter in vivo. Freire IR; Bensig EO; Kuang Z; MacLellan SR FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 39066494 [TBL] [Abstract][Full Text] [Related]
73. Construction and expression of sugar kinase transcriptional gene fusions by using the Sinorhizobium meliloti ORFeome. Humann JL; Schroeder BK; Mortimer MW; House BL; Yurgel SN; Maloney SC; Ward KL; Fallquist HM; Ziemkiewicz HT; Kahn ML Appl Environ Microbiol; 2008 Nov; 74(21):6756-65. PubMed ID: 18791020 [TBL] [Abstract][Full Text] [Related]
74. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021. Borisova SA; Christman HD; Metcalf ME; Zulkepli NA; Zhang JK; van der Donk WA; Metcalf WW J Biol Chem; 2011 Jun; 286(25):22283-90. PubMed ID: 21543322 [TBL] [Abstract][Full Text] [Related]
75. Getting to the point: unipolar growth of Hyphomicrobiales. Amstutz J; Krol E; Verhaeghe A; De Bolle X; Becker A; Brown PJ Curr Opin Microbiol; 2024 Jun; 79():102470. PubMed ID: 38569420 [TBL] [Abstract][Full Text] [Related]
76. Tol-Pal System and Rgs Proteins Interact to Promote Unipolar Growth and Cell Division in Sinorhizobium meliloti. Krol E; Yau HCL; Lechner M; Schäper S; Bange G; Vollmer W; Becker A mBio; 2020 Jun; 11(3):. PubMed ID: 32605980 [No Abstract] [Full Text] [Related]
77. A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in diCenzo GC; Muhammed Z; Østerås M; O'Brien SAP; Finan TM Genetics; 2017 Nov; 207(3):961-974. PubMed ID: 28851745 [TBL] [Abstract][Full Text] [Related]
78. A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti. Amarelle V; Koziol U; Rosconi F; Noya F; O'Brian MR; Fabiano E Microbiology (Reading); 2010 Jun; 156(Pt 6):1873-1882. PubMed ID: 20167620 [TBL] [Abstract][Full Text] [Related]
79. Phosphorylation-induced dimerization of the FixJ receiver domain. Da Re S; Schumacher J; Rousseau P; Fourment J; Ebel C; Kahn D Mol Microbiol; 1999 Nov; 34(3):504-11. PubMed ID: 10564492 [TBL] [Abstract][Full Text] [Related]
80. Genetic analysis of signal integration by the Sinorhizobium meliloti sensor kinase FeuQ. VanYperen RD; Orton TS; Griffitts JS Microbiology (Reading); 2015 Feb; 161(Pt 2):244-253. PubMed ID: 25479839 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]