These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 18236161)
21. Strain distribution in an elastic substrate vibrated in a bioreactor for vocal fold tissue engineering. Titze IR; Broadhead K; Tresco P; Gray S J Biomech; 2005 Dec; 38(12):2406-14. PubMed ID: 16214488 [TBL] [Abstract][Full Text] [Related]
22. Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor. Whittaker RJ; Booth R; Dyson R; Bailey C; Parsons Chini L; Naire S; Payvandi S; Rong Z; Woollard H; Cummings LJ; Waters SL; Mawasse L; Chaudhuri JB; Ellis MJ; Michael V; Kuiper NJ; Cartmell S J Theor Biol; 2009 Feb; 256(4):533-46. PubMed ID: 19014952 [TBL] [Abstract][Full Text] [Related]
23. A compact computational model for cell construct development in perfusion culture. Chung CA; Chen CP; Lin TH; Tseng CS Biotechnol Bioeng; 2008 Apr; 99(6):1535-41. PubMed ID: 17972333 [TBL] [Abstract][Full Text] [Related]
24. A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor. Nava MM; Raimondi MT; Pietrabissa R Biomech Model Mechanobiol; 2013 Nov; 12(6):1169-79. PubMed ID: 23371525 [TBL] [Abstract][Full Text] [Related]
25. An innovative lattice Boltzmann model for simulating Michaelis-Menten-based diffusion-advection kinetics and its application within a cartilage cell bioreactor. Moaty Sayed AA; Hussein MA; Becker T Biomech Model Mechanobiol; 2010 Apr; 9(2):141-51. PubMed ID: 19633990 [TBL] [Abstract][Full Text] [Related]
26. Use of bioreactors in maxillofacial tissue engineering. Depprich R; Handschel J; Wiesmann HP; Jäsche-Meyer J; Meyer U Br J Oral Maxillofac Surg; 2008 Jul; 46(5):349-54. PubMed ID: 18343545 [TBL] [Abstract][Full Text] [Related]
27. Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications. Wang L; Korossis S; Ingham E; Fisher J; Jin Z J Heart Valve Dis; 2008 Nov; 17(6):700-9. PubMed ID: 19137804 [TBL] [Abstract][Full Text] [Related]
28. A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Zahedmanesh H; Lally C Biomech Model Mechanobiol; 2012 Mar; 11(3-4):363-77. PubMed ID: 21626394 [TBL] [Abstract][Full Text] [Related]
29. Windows of operation for bioreactor design for the controlled formation of tissue-engineered arteries. Gerontas S; Farid SS; Hoare M Biotechnol Prog; 2009; 25(3):842-53. PubMed ID: 19399902 [TBL] [Abstract][Full Text] [Related]
30. Multiphase modelling of cell behaviour on artificial scaffolds: effects of nutrient depletion and spatially nonuniform porosity. Lemon G; King JR Math Med Biol; 2007 Mar; 24(1):57-83. PubMed ID: 17018570 [TBL] [Abstract][Full Text] [Related]
31. Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures. Mihailova M; Trenev V; Genova P; Konstantinov S Ann N Y Acad Sci; 2006 Dec; 1091():470-89. PubMed ID: 17341637 [TBL] [Abstract][Full Text] [Related]
32. On scaffold designing for bone regeneration: A computational multiscale approach. Sanz-Herrera JA; García-Aznar JM; Doblaré M Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187 [TBL] [Abstract][Full Text] [Related]
33. 2-D coupled computational model of biological cell proliferation and nutrient delivery in a perfusion bioreactor. Shakeel M Math Biosci; 2013 Mar; 242(1):86-94. PubMed ID: 23291465 [TBL] [Abstract][Full Text] [Related]
34. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors. Belfiore LA; Bonani W; Leoni M; Belfiore CJ Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation. Woo Jung J; Yi HG; Kang TY; Yong WJ; Jin S; Yun WS; Cho DW J Biomech Eng; 2013 Aug; 135(8):84501. PubMed ID: 23719774 [TBL] [Abstract][Full Text] [Related]
36. [Achievement and progress of dynamic culture conditions on the construction of engineered blood vessel substitutes]. Han Z; Kong H; Xu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):716-9. PubMed ID: 18693463 [TBL] [Abstract][Full Text] [Related]
37. Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems. Cummings LJ; Waters SL Math Med Biol; 2007 Jun; 24(2):169-208. PubMed ID: 17043081 [TBL] [Abstract][Full Text] [Related]
38. Model-based analysis and design of a microchannel reactor for tissue engineering. Mehta K; Linderman JJ Biotechnol Bioeng; 2006 Jun; 94(3):596-609. PubMed ID: 16586504 [TBL] [Abstract][Full Text] [Related]
39. Novel strategies to engineering biological tissue in vitro. Urciuolo F; Imparato G; Guaccio A; Mele B; Netti PA Methods Mol Biol; 2012; 811():223-44. PubMed ID: 22042683 [TBL] [Abstract][Full Text] [Related]
40. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Zhang ZY; Teoh SH; Chong WS; Foo TT; Chng YC; Choolani M; Chan J Biomaterials; 2009 May; 30(14):2694-704. PubMed ID: 19223070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]