These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18236465)

  • 1. Drug-screening platform based on the contractility of tissue-engineered muscle.
    Vandenburgh H; Shansky J; Benesch-Lee F; Barbata V; Reid J; Thorrez L; Valentini R; Crawford G
    Muscle Nerve; 2008 Apr; 37(4):438-47. PubMed ID: 18236465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts.
    Vandenburgh H; Shansky J; Benesch-Lee F; Skelly K; Spinazzola JM; Saponjian Y; Tseng BS
    FASEB J; 2009 Oct; 23(10):3325-34. PubMed ID: 19487307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical impedance as a novel biomarker of myotube atrophy and hypertrophy.
    Rakhilin S; Turner G; Katz M; Warden R; Irelan J; Abassi YA; Glass DJ
    J Biomol Screen; 2011 Jul; 16(6):565-74. PubMed ID: 21493966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.
    Lee PH; Vandenburgh HH
    Tissue Eng Part A; 2013 Oct; 19(19-20):2147-55. PubMed ID: 23574457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the structure and contractility of engineered skeletal muscle thin films.
    Sun Y; Duffy R; Lee A; Feinberg AW
    Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a drug screening platform based on engineered heart tissue.
    Hansen A; Eder A; Bönstrup M; Flato M; Mewe M; Schaaf S; Aksehirlioglu B; Schwoerer AP; Uebeler J; Eschenhagen T
    Circ Res; 2010 Jul; 107(1):35-44. PubMed ID: 20448218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.
    Nakamura T; Takagi S; Kamon T; Yamasaki KI; Fujisato T
    J Biosci Bioeng; 2017 Feb; 123(2):265-271. PubMed ID: 27622541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro.
    Eberli D; Soker S; Atala A; Yoo JJ
    Methods; 2009 Feb; 47(2):98-103. PubMed ID: 18952174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models.
    Gibbons MC; Foley MA; Cardinal KO
    Tissue Eng Part B Rev; 2013 Feb; 19(1):14-30. PubMed ID: 22800715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific effects of atorvastatin on 3-hydroxy-3-methylglutarylcoenzyme A reductase expression and activity in spontaneously hypertensive rats.
    Chen GP; Yao L; Lu X; Li L; Hu SJ
    Acta Pharmacol Sin; 2008 Oct; 29(10):1181-6. PubMed ID: 18817622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
    Jun I; Jeong S; Shin H
    Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered axially vascularized contractile skeletal muscle.
    Borschel GH; Dow DE; Dennis RG; Brown DL
    Plast Reconstr Surg; 2006 Jun; 117(7):2235-42. PubMed ID: 16772923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenic gene modification of skeletal muscle cells to compensate for ageing-induced decline in bioengineered functional muscle tissue.
    Delo DM; Eberli D; Williams JK; Andersson KE; Atala A; Soker S
    BJU Int; 2008 Sep; 102(7):878-84. PubMed ID: 18489526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate.
    Cimetta E; Pizzato S; Bollini S; Serena E; De Coppi P; Elvassore N
    Biomed Microdevices; 2009 Apr; 11(2):389-400. PubMed ID: 18987976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model.
    Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
    Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA
    Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antitumor and apoptosis promoting properties of atorvastatin, an inhibitor of HMG-CoA reductase, against Dalton's Lymphoma Ascites tumor in mice.
    Ajith TA; Anu V; Riji T
    J Exp Ther Oncol; 2008; 7(4):291-8. PubMed ID: 19227009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From scrawny to brawny: the quest for neomusculogenesis; smart surfaces and scaffolds for muscle tissue engineering.
    Rowlands AS; Hudson JE; Cooper-White JJ
    Expert Rev Med Devices; 2007 Sep; 4(5):709-28. PubMed ID: 17850206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle.
    Khodabukus A; Madden L; Prabhu NK; Koves TR; Jackman CP; Muoio DM; Bursac N
    Biomaterials; 2019 Apr; 198():259-269. PubMed ID: 30180985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.