These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 18236791)
21. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Yang R; Liao WP; Wu PH J Environ Manage; 2012 Aug; 104():67-76. PubMed ID: 22484656 [TBL] [Abstract][Full Text] [Related]
22. Simulating the impact of heavy rain on leaching behavior of municipal solid waste incineration bottom ash (MSWI BA) in semi-aerobic landfill. Linh HN; Tamura H; Komiya T; Saffarzadeh A; Shimaoka T Waste Manag; 2020 Jul; 113():280-293. PubMed ID: 32559698 [TBL] [Abstract][Full Text] [Related]
23. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification. Liu Y; Liu Y Environ Sci Technol; 2005 May; 39(10):3855-63. PubMed ID: 15952396 [TBL] [Abstract][Full Text] [Related]
24. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes. Oehmig WN; Roessler JG; Zhang J; Townsend TG J Hazard Mater; 2015; 283():500-6. PubMed ID: 25464288 [TBL] [Abstract][Full Text] [Related]
25. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Costa G; Baciocchi R; Polettini A; Pomi R; Hills CD; Carey PJ Environ Monit Assess; 2007 Dec; 135(1-3):55-75. PubMed ID: 17520338 [TBL] [Abstract][Full Text] [Related]
26. [Characterization and heavy metals leaching toxicity of fly ash from municipal solid waste incinerators in China]. Ye TM; Wang W; Gao XB; Wan X; Wang F Huan Jing Ke Xue; 2007 Nov; 28(11):2646-50. PubMed ID: 18290498 [TBL] [Abstract][Full Text] [Related]
27. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill. Kong Q; Yao J; Qiu Z; Shen D Biomed Res Int; 2016; 2016():9687879. PubMed ID: 28044139 [TBL] [Abstract][Full Text] [Related]
28. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
29. Treatment process for MSW combustion fly ash laboratory and pilot plant experiments. Wilewska-Bien M; Lundberg M; Steenari BM; Theliander H Waste Manag; 2007; 27(9):1213-24. PubMed ID: 17157492 [TBL] [Abstract][Full Text] [Related]
30. Waste type, incineration, and aeration are associated with per- and polyfluoroalkyl levels in landfill leachates. Solo-Gabriele HM; Jones AS; Lindstrom AB; Lang JR Waste Manag; 2020 Apr; 107():191-200. PubMed ID: 32304853 [TBL] [Abstract][Full Text] [Related]
31. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash. Yakubu Y; Zhou J; Ping D; Shu Z; Chen Y J Environ Manage; 2018 Feb; 207():243-248. PubMed ID: 29179113 [TBL] [Abstract][Full Text] [Related]
32. Leachate formation and characteristics from gasification and grate incineration bottom ash under landfill conditions. Sivula L; Sormunen K; Rintala J Waste Manag; 2012 Apr; 32(4):780-8. PubMed ID: 22197667 [TBL] [Abstract][Full Text] [Related]
33. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Zhang Y; Jiang J; Chen M J Environ Sci (China); 2008; 20(11):1398-402. PubMed ID: 19202882 [TBL] [Abstract][Full Text] [Related]
34. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste. Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439 [TBL] [Abstract][Full Text] [Related]
35. Stabilization of Waste-to-Energy (WTE) fly ash for disposal in landfills or use as cement substitute. Tian Y; Themelis NJ; Zhao D; Thanos Bourtsalas AC; Kawashima S Waste Manag; 2022 Aug; 150():227-243. PubMed ID: 35863171 [TBL] [Abstract][Full Text] [Related]
36. Belgian MSWI fly ashes and APC residues: a characterisation study. De Boom A; Degrez M Waste Manag; 2012 Jun; 32(6):1163-70. PubMed ID: 22244614 [TBL] [Abstract][Full Text] [Related]
37. [Extraction procedure for leaching toxicity of fly ash from municipal solid waste incinerators under Co-disposal scenario in landfill]. Wang W; Ye TM; Wang Q; Gao XB; Wan X Huan Jing Ke Xue; 2007 Dec; 28(12):2867-72. PubMed ID: 18290452 [TBL] [Abstract][Full Text] [Related]
38. Accelerated carbonation of municipal solid waste incineration fly ashes. Li X; Bertos MF; Hills CD; Carey PJ; Simon S Waste Manag; 2007; 27(9):1200-6. PubMed ID: 17015006 [TBL] [Abstract][Full Text] [Related]
39. Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in waste leachates generated from combustion residues during the formation of ettringite. Saikia N; Kato S; Kojima T Environ Toxicol Chem; 2006 Jul; 25(7):1710-9. PubMed ID: 16833129 [TBL] [Abstract][Full Text] [Related]
40. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash. Gitari WM; Petrik LF; Key DL; Okujeni C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(2):117-37. PubMed ID: 21170774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]