BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18236795)

  • 41. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis.
    Martello DV; Pekney NJ; Anderson RR; Davidson CI; Hopke PK; Kim E; Christensen WF; Mangelson NF; Eatough DJ
    J Air Waste Manag Assoc; 2008 Mar; 58(3):357-68. PubMed ID: 18376639
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemical characterization of PM
    Shohel M; Kistler M; Rahman MA; Kasper-Giebl A; Reid JS; Salam A
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4558-4569. PubMed ID: 29188599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.
    Villalobos AM; Barraza F; Jorquera H; Schauer JJ
    Sci Total Environ; 2015 Apr; 512-513():133-142. PubMed ID: 25617780
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Positive sampling artifacts in particulate organic carbon measurements in roadside environment.
    Cheng Y; Lee SC; Ho KF; Fung K
    Environ Monit Assess; 2010 Sep; 168(1-4):645-56. PubMed ID: 19760087
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fine Particulate Organic Material at Meadview During the Project MOHAVE Summer Intensive Study.
    Cui W; Machir J; Lewis L; Eatough DJ; Eatough NL
    J Air Waste Manag Assoc; 1997 Mar; 47(3):357-369. PubMed ID: 29081293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols.
    Ren H; Xue M; An Z; Zhou W; Jiang J
    J Chromatogr A; 2019 Mar; 1589():141-148. PubMed ID: 30642676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver.
    Xie M; Hannigan MP; Barsanti KC
    Environ Sci Technol; 2014; 48(5):2835-42. PubMed ID: 24517510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fine particulate matter source apportionment for the Chemical speciation Trends Network site at Birmingham, Alabama, using Positive Matrix Factorization.
    Baumann K; Jayanty RK; Flanagan JB
    J Air Waste Manag Assoc; 2008 Jan; 58(1):27-44. PubMed ID: 18236792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The simultaneous capture of mercury and fine particles by hybrid filter with powder activated carbon injection.
    Jang HN; Back SK; Sung JH; Kang YS; Jurng J; Seo YC
    Environ Pollut; 2018 Jun; 237():531-540. PubMed ID: 29524875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM
    Choi JH; Ryu J; Jeon S; Seo J; Yang YH; Pack SP; Choung S; Jang KS
    Environ Pollut; 2017 Jun; 225():329-337. PubMed ID: 28274593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in integrated and continuous measurements for particle mass and chemical composition.
    Chow JC; Doraiswamy P; Watson JG; Chen LW; Ho SS; Sodeman DA
    J Air Waste Manag Assoc; 2008 Feb; 58(2):141-63. PubMed ID: 18318335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of PM
    Khanna I; Khare M; Gargava P; Khan AA
    J Air Waste Manag Assoc; 2018 May; 68(5):430-437. PubMed ID: 29309262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].
    Fu HY; Yan CQ; Zheng M; Cai J; Li XY; Zhang YJ; Zhou Zhen ; Fu Z; Li M; Li L; Zhang YH
    Huan Jing Ke Xue; 2014 Nov; 35(11):4070-7. PubMed ID: 25639078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Haze formation indicator based on observation of critical carbonaceous species in the atmosphere.
    Yang S; Duan F; Ma Y; He K; Zhu L; Ma T; Ye S; Li H; Huang T; Kimoto T
    Environ Pollut; 2019 Jan; 244():84-92. PubMed ID: 30326389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010.
    Vicente A; Calvo A; Fernandes AP; Nunes T; Monteiro C; Pio C; Alves C
    J Environ Sci (China); 2017 Mar; 53():122-131. PubMed ID: 28372736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hourly measurements of fine particulate sulfate and carbon aerosols at the Harvard-U.S. Environmental Protection Agency Supersite in Boston.
    Kang CM; Koutrakis P; Suh HH
    J Air Waste Manag Assoc; 2010 Nov; 60(11):1327-34. PubMed ID: 21141426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Pilot Study: The UNC Passive Aerosol Sampler in a Working Environment.
    Shirdel M; Wingfors H; Andersson BM; Sommar JN; Bergdahl IA; Liljelind IE
    Ann Work Expo Health; 2017 Oct; 61(8):1029-1034. PubMed ID: 29028256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Field performance evaluation during fog-dominated wintertime of a newly developed denuder-equipped PM1 sampler.
    Singh DK; Lakshay ; Gupta T
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4551-64. PubMed ID: 24337990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Field evaluation of particulate matter measurements using tapered element oscillating microbalance in a layer house.
    Li QF; Wang-Li L; Liu Z; Heber AJ
    J Air Waste Manag Assoc; 2012 Mar; 62(3):322-35. PubMed ID: 22482290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.