BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18237276)

  • 1. Redox regulation of methylthioadenosine phosphorylase in liver cells: molecular mechanism and functional implications.
    Fernández-Irigoyen J; Santamaría M; Sánchez-Quiles V; Latasa MU; Santamaría E; Muñoz J; Sánchez Del Pino MM; Valero ML; Prieto J; Avila MA; Corrales FJ
    Biochem J; 2008 Apr; 411(2):457-65. PubMed ID: 18237276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Down-regulation of methylthioadenosine phosphorylase (MTAP) induces progression of hepatocellular carcinoma via accumulation of 5'-deoxy-5'-methylthioadenosine (MTA).
    Kirovski G; Stevens AP; Czech B; Dettmer K; Weiss TS; Wild P; Hartmann A; Bosserhoff AK; Oefner PJ; Hellerbrand C
    Am J Pathol; 2011 Mar; 178(3):1145-52. PubMed ID: 21356366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of methylthioadenosine phosphorylase cDNA in p16-, MTAP- malignant cells: restoration of methylthioadenosine phosphorylase-dependent salvage pathways and alterations of sensitivity to inhibitors of purine de novo synthesis.
    Chen ZH; Olopade OI; Savarese TM
    Mol Pharmacol; 1997 Nov; 52(5):903-11. PubMed ID: 9351982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and function of methylthioadenosine phosphorylase in chronic liver disease.
    Czech B; Dettmer K; Valletta D; Saugspier M; Koch A; Stevens AP; Thasler WE; Müller M; Oefner PJ; Bosserhoff AK; Hellerbrand C
    PLoS One; 2013; 8(12):e80703. PubMed ID: 24324622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Targeting of
    Tang B; Lee HO; An SS; Cai KQ; Kruger WD
    Cancer Res; 2018 Aug; 78(15):4386-4395. PubMed ID: 29844120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease.
    Bigaud E; Corrales FJ
    Mol Cell Proteomics; 2016 May; 15(5):1498-510. PubMed ID: 26819315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the therapeutic index of 5-fluorouracil and 6-thioguanine by targeting loss of MTAP in tumor cells.
    Tang B; Testa JR; Kruger WD
    Cancer Biol Ther; 2012 Sep; 13(11):1082-90. PubMed ID: 22825330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of purines in human lymphoblast cells deficient in methylthioadenosine phosphorylase activity.
    Gordon RB; Blackwell K; Emmerson BT
    Biochim Biophys Acta; 1987 Jan; 927(1):1-7. PubMed ID: 3098299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene deletion chemoselectivity: codeletion of the genes for p16(INK4), methylthioadenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy.
    Chen ZH; Zhang H; Savarese TM
    Cancer Res; 1996 Mar; 56(5):1083-90. PubMed ID: 8640765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.
    Lubin M; Lubin A
    PLoS One; 2009 May; 4(5):e5735. PubMed ID: 19478948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis.
    Appleby TC; Erion MD; Ealick SE
    Structure; 1999 Jun; 7(6):629-41. PubMed ID: 10404592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a potent transition-state inhibitor of 5'-deoxy-5'-methylthioadenosine phosphorylase.
    Kamath VP; Ananth S; Bantia S; Morris PE
    J Med Chem; 2004 Mar; 47(6):1322-4. PubMed ID: 14998321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5.
    Mavrakis KJ; McDonald ER; Schlabach MR; Billy E; Hoffman GR; deWeck A; Ruddy DA; Venkatesan K; Yu J; McAllister G; Stump M; deBeaumont R; Ho S; Yue Y; Liu Y; Yan-Neale Y; Yang G; Lin F; Yin H; Gao H; Kipp DR; Zhao S; McNamara JT; Sprague ER; Zheng B; Lin Y; Cho YS; Gu J; Crawford K; Ciccone D; Vitari AC; Lai A; Capka V; Hurov K; Porter JA; Tallarico J; Mickanin C; Lees E; Pagliarini R; Keen N; Schmelzle T; Hofmann F; Stegmeier F; Sellers WR
    Science; 2016 Mar; 351(6278):1208-13. PubMed ID: 26912361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter-hypermethylation is causing functional relevant downregulation of methylthioadenosine phosphorylase (MTAP) expression in hepatocellular carcinoma.
    Hellerbrand C; Mühlbauer M; Wallner S; Schuierer M; Behrmann I; Bataille F; Weiss T; Schölmerich J; Bosserhoff AK
    Carcinogenesis; 2006 Jan; 27(1):64-72. PubMed ID: 16081515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and metastases of human lung cancer are inhibited in mouse xenografts by a transition state analogue of 5'-methylthioadenosine phosphorylase.
    Basu I; Locker J; Cassera MB; Belbin TJ; Merino EF; Dong X; Hemeon I; Evans GB; Guha C; Schramm VL
    J Biol Chem; 2011 Feb; 286(6):4902-11. PubMed ID: 21135097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular 5'-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-binding proteins.
    Tang B; Lee HO; Gupta S; Wang L; Kurimchak AM; Duncan JS; Kruger WD
    J Biol Chem; 2022 Sep; 298(9):102367. PubMed ID: 35963436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of 5'-deoxy-5'-methylthioadenosine and 5'-deoxy-5'-methylthioinosine to methionine in cultured human leukemic cells.
    Savarese TM; Ghoda LY; Dexter DL; Parks RE
    Cancer Res; 1983 Oct; 43(10):4699-702. PubMed ID: 6411330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies.
    Bertino JR; Waud WR; Parker WB; Lubin M
    Cancer Biol Ther; 2011 Apr; 11(7):627-32. PubMed ID: 21301207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leishmania infantum 5'-Methylthioadenosine Phosphorylase presents relevant structural divergence to constitute a potential drug target.
    Abid H; Harigua-Souiai E; Mejri T; Barhoumi M; Guizani I
    BMC Struct Biol; 2017 Dec; 17(1):9. PubMed ID: 29258562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylthioadenosine phosphorylase cDNA transfection alters sensitivity to depletion of purine and methionine in A549 lung cancer cells.
    Hori H; Tran P; Carrera CJ; Hori Y; Rosenbach MD; Carson DA; Nobori T
    Cancer Res; 1996 Dec; 56(24):5653-8. PubMed ID: 8971171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.