These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18238052)
1. Clustering-based algorithms for single-hidden-layer sigmoid perceptron. Uykan Z IEEE Trans Neural Netw; 2003; 14(3):708-15. PubMed ID: 18238052 [TBL] [Abstract][Full Text] [Related]
2. Analysis of input-output clustering for determining centers of RBFN. Uykan Z; Güzeliş C; Celebi ME; Koivo HN IEEE Trans Neural Netw; 2000; 11(4):851-8. PubMed ID: 18249813 [TBL] [Abstract][Full Text] [Related]
3. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Auer P; Burgsteiner H; Maass W Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524 [TBL] [Abstract][Full Text] [Related]
4. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
5. Design of double fuzzy clustering-driven context neural networks. Kim EH; Oh SK; Pedrycz W Neural Netw; 2018 Aug; 104():1-14. PubMed ID: 29689457 [TBL] [Abstract][Full Text] [Related]
6. Novel maximum-margin training algorithms for supervised neural networks. Ludwig O; Nunes U IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990 [TBL] [Abstract][Full Text] [Related]
7. Radial basis function networks with linear interval regression weights for symbolic interval data. Su SF; Chuang CC; Tao CW; Jeng JT; Hsiao CC IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):69-80. PubMed ID: 21859627 [TBL] [Abstract][Full Text] [Related]
10. Learning algorithms based on linearization. Hahnloser R Network; 1998 Aug; 9(3):363-80. PubMed ID: 9861996 [TBL] [Abstract][Full Text] [Related]
11. An ART-based construction of RBF networks. Lee SJ; Hou CL IEEE Trans Neural Netw; 2002; 13(6):1308-21. PubMed ID: 18244529 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical genetic algorithm for near optimal feedforward neural network design. Yen G; Lu H Int J Neural Syst; 2002 Feb; 12(1):31-43. PubMed ID: 11852443 [TBL] [Abstract][Full Text] [Related]
13. A new backpropagation learning algorithm for layered neural networks with nondifferentiable units. Oohori T; Naganuma H; Watanabe K Neural Comput; 2007 May; 19(5):1422-35. PubMed ID: 17381272 [TBL] [Abstract][Full Text] [Related]
14. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Xu Y; Zeng X; Han L; Yang J Neural Netw; 2013 Jul; 43():99-113. PubMed ID: 23500504 [TBL] [Abstract][Full Text] [Related]
15. Two-layer contractive encodings for learning stable nonlinear features. Schulz H; Cho K; Raiko T; Behnke S Neural Netw; 2015 Apr; 64():4-11. PubMed ID: 25292461 [TBL] [Abstract][Full Text] [Related]
17. The No-Prop algorithm: a new learning algorithm for multilayer neural networks. Widrow B; Greenblatt A; Kim Y; Park D Neural Netw; 2013 Jan; 37():182-8. PubMed ID: 23140797 [TBL] [Abstract][Full Text] [Related]
18. Implementation of Analog Perceptron as an Essential Element of Configurable Neural Networks. Geng C; Sun Q; Nakatake S Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751288 [TBL] [Abstract][Full Text] [Related]
19. A modified error backpropagation algorithm for complex-value neural networks. Chen X; Tang Z; Variappan C; Li S; Okada T Int J Neural Syst; 2005 Dec; 15(6):435-43. PubMed ID: 16385633 [TBL] [Abstract][Full Text] [Related]
20. On global-local artificial neural networks for function approximation. Wedge D; Ingram D; McLean D; Mingham C; Bandar Z IEEE Trans Neural Netw; 2006 Jul; 17(4):942-952. PubMed ID: 16856657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]