These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 18238063)
1. On the construction and training of reformulated radial basis function neural networks. Karayiannis NB; Randolph-Gips MM IEEE Trans Neural Netw; 2003; 14(4):835-46. PubMed ID: 18238063 [TBL] [Abstract][Full Text] [Related]
2. Reformulated radial basis neural networks trained by gradient descent. Karayiannis NB IEEE Trans Neural Netw; 1999; 10(3):657-71. PubMed ID: 18252566 [TBL] [Abstract][Full Text] [Related]
3. Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification. Karayiannis NB; Xiong Y IEEE Trans Neural Netw; 2006 Sep; 17(5):1222-34. PubMed ID: 17001983 [TBL] [Abstract][Full Text] [Related]
4. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques. Karayiannis NB; Mi GW IEEE Trans Neural Netw; 1997; 8(6):1492-506. PubMed ID: 18255750 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity analysis applied to the construction of radial basis function networks. Shi D; Yeung DS; Gao J Neural Netw; 2005 Sep; 18(7):951-7. PubMed ID: 15939573 [TBL] [Abstract][Full Text] [Related]
6. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Vuković N; Miljković Z Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384 [TBL] [Abstract][Full Text] [Related]
8. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. Oyang YJ; Hwang SC; Ou YY; Chen CY; Chen ZW IEEE Trans Neural Netw; 2005 Jan; 16(1):225-36. PubMed ID: 15732402 [TBL] [Abstract][Full Text] [Related]
9. Automatic determination of radial basis functions: an immunity-based approach. de Castro LN; Von Zuben FJ Int J Neural Syst; 2001 Dec; 11(6):523-35. PubMed ID: 11852437 [TBL] [Abstract][Full Text] [Related]
10. Radial basis function networks with linear interval regression weights for symbolic interval data. Su SF; Chuang CC; Tao CW; Jeng JT; Hsiao CC IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):69-80. PubMed ID: 21859627 [TBL] [Abstract][Full Text] [Related]
11. A new formulation for feedforward neural networks. Razavi S; Tolson BA IEEE Trans Neural Netw; 2011 Oct; 22(10):1588-98. PubMed ID: 21859600 [TBL] [Abstract][Full Text] [Related]
12. Robust radial basis function neural networks. Lee CC; Chung PC; Tsai JR; Chang CI IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):674-85. PubMed ID: 18252348 [TBL] [Abstract][Full Text] [Related]
13. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. Huang GB; Saratchandran P; Sundararajan N IEEE Trans Neural Netw; 2005 Jan; 16(1):57-67. PubMed ID: 15732389 [TBL] [Abstract][Full Text] [Related]
14. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models. Xu L Int J Neural Syst; 2001 Feb; 11(1):43-69. PubMed ID: 11310554 [TBL] [Abstract][Full Text] [Related]
15. A hybrid linear/nonlinear training algorithm for feedforward neural networks. McLoone S; Brown MD; Irwin G; Lightbody A IEEE Trans Neural Netw; 1998; 9(4):669-84. PubMed ID: 18252490 [TBL] [Abstract][Full Text] [Related]
16. Kernel orthonormalization in radial basis function neural networks. Kaminski W; Strumillo P IEEE Trans Neural Netw; 1997; 8(5):1177-83. PubMed ID: 18255719 [TBL] [Abstract][Full Text] [Related]
17. Numerical solution of elliptic partial differential equation using radial basis function neural networks. Jianyu L; Siwei L; Yingjian Q; Yaping H Neural Netw; 2003; 16(5-6):729-34. PubMed ID: 12850028 [TBL] [Abstract][Full Text] [Related]
18. Constructive approximation to multivariate function by decay RBF neural network. Hou M; Han X IEEE Trans Neural Netw; 2010 Sep; 21(9):1517-23. PubMed ID: 20693108 [TBL] [Abstract][Full Text] [Related]
19. An axiomatic approach to soft learning vector quantization and clustering. Karayiannis NB IEEE Trans Neural Netw; 1999; 10(5):1153-65. PubMed ID: 18252616 [TBL] [Abstract][Full Text] [Related]
20. An ART-based construction of RBF networks. Lee SJ; Hou CL IEEE Trans Neural Netw; 2002; 13(6):1308-21. PubMed ID: 18244529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]