These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 18238393)

  • 21. Piezoelectric ceramic disks with thickness-graded material properties.
    Lee PY; Yu JD; Li X; Shih WH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):205-15. PubMed ID: 18238415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thickness-shear vibration of an AT-cut quartz plate with elliptical electrodes and implications in optimal blank geometry.
    Xu L; Geng Y; Hu Y; Fan H; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):875-9. PubMed ID: 19406718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency spectra of beam-plates revisited.
    Guo YQ; Chen WQ; Pao YH
    Ultrasonics; 2009 Jan; 49(1):4-9. PubMed ID: 18606431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The determination of the optimal length of crystal blanks in quartz crystal resonators.
    Wang J; Zhao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2023-30. PubMed ID: 16422414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.
    Xu L; Zhang Y; Fan H; Hu J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):613-21. PubMed ID: 19411219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear coupling between thickness- shear and thickness-stretch modes in a rotated Y-cut quartz resonator.
    Yang Z; Hu Y; Wang J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):220-4. PubMed ID: 19213649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator.
    Wang W; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1192-8. PubMed ID: 25004481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical effects of electrodes on the vibrations of quartz crystal plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):612-25. PubMed ID: 12046937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thickness-shear and thickness-twist vibrations of an AT-cut quartz mesa resonator.
    He H; Liu J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2050-5. PubMed ID: 21989869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate.
    Wang J; Du J; Li Z; Lin J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e935-9. PubMed ID: 16814834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High frequency shear horizontal plate acoustic wave devices.
    Vohra G; Joshi SG; Zaitsev BD; Kuznetsova IE; Teplykh AA
    Ultrasonics; 2009 Dec; 49(8):760-4. PubMed ID: 19577781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress-induced frequency shifts of degenerate thickness-shear modes in rotated Y-cut quartz resonators.
    Kosinski JA; Pastore RA; Yang J; Yang X; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1880-3. PubMed ID: 20679018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass sensitivity of acoustic plate mode in liquids.
    Teston F; Feuillard G; Tessier L; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1266-72. PubMed ID: 18244289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of a monolithic crystal plate acoustic wave filter.
    He H; Liu J; Yang J
    Ultrasonics; 2011 Dec; 51(8):991-6. PubMed ID: 21705036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.