These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18238399)

  • 41. Reduction of quartz crystal oscillator flicker-of-frequency and white phase noise (floor) levels and acceleration sensitivity via use of multiple resonators.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):427-30. PubMed ID: 18263203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-temperature superconducting resonators.
    Taber RC; Hollenhorst JN; Cutler LS; Bagwell TL; Newman N; Cole BF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):398-404. PubMed ID: 18267649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical laser power spectral performance: a coupled fluid dynamic, kinetic, and physical optics model.
    Sentman LH
    Appl Opt; 1978 Jul; 17(14):2244-9. PubMed ID: 20203765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the tracking of resonance and antiresonance of a piezoelectric resonator.
    Hayashi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):231-6. PubMed ID: 18267579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.
    Quddusi HM; Ramsey CM; Gonzalez-Pons JC; Henderson JJ; del Barco E; de Loubens G; Kent AD
    Rev Sci Instrum; 2008 Jul; 79(7):074703. PubMed ID: 18681725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling nonlinearities in MEMS oscillators.
    Agrawal DK; Woodhouse J; Seshia AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1646-59. PubMed ID: 25004537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An analytical formulation for phase noise in MEMS oscillators.
    Agrawal D; Seshia A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1938-52. PubMed ID: 25474770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tunable microwave resonators and oscillators using magnetostatic waves.
    Ishak WS; Kok-Wai C; Kunz WE; Miccoli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):396-405. PubMed ID: 18290166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of the Close-to-Carrier Phase Noise in a CMOS-MEMS Oscillator Using a Phase Tunable Sustaining-Amplifier.
    Sobreviela G; Riverola M; Torres F; Uranga A; Barniol N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 May; 64(5):888-897. PubMed ID: 28207393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flicker noise measurement of HF quartz resonators.
    Rubiola E; Groslambert J; Brunet M; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):361-8. PubMed ID: 18238551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. K-cut quartz SAW resonators for stable frequency sources.
    Takagi M; Momosaki E; Yamakita M; Oura N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):328-37. PubMed ID: 18244184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigations on LGS and LGT crystals to realize BAW resonators.
    Imbaud J; Boy JJ; Galliou S; Bourquin R; Romand JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2384-91. PubMed ID: 19049918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theory and design of piezoelectric resonators immune to acceleration: present state of the art.
    Kosinski JA; Pastore RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1426-37. PubMed ID: 11570769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules.
    Yong YK; Vig JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):543-50. PubMed ID: 18285076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Helmholtz resonator enhancement of photoacoustic signals.
    McClenny WA; Bennett CA; Russwurm GM; Richmond R
    Appl Opt; 1981 Feb; 20(4):650-3. PubMed ID: 20309172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability.
    Li MH; Chen WC; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):346-57. PubMed ID: 22481767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Residual phase noise modeling of amplifiers using silicon bipolar transistors.
    Theodoropoulos K; Everard J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):562-73. PubMed ID: 20211771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Doubly rotated quartz resonators with a low amplitude-frequency effect: the LD-cut.
    Gufflet N; Sthal F; Boy JJ; Bourquin R; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1681-5. PubMed ID: 11800131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How Does Ambient Temperature Fluctuation Influence the Short-Term Frequency Stability of OCXO?
    Xu L; Ye P; Liao S; Chen C; Tan F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Aug; 70(8):893-902. PubMed ID: 37307175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of a short-term stability measuring system of quartz crystal resonators.
    Sthal F; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):182-7. PubMed ID: 18238412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.