These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 18238411)

  • 1. Quantitative classification of adhesive bondline dimensions using Lamb waves and artificial neural networks.
    Todd CD; Challis RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):167-81. PubMed ID: 18238411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transmission of Lamb waves across adhesively bonded lap joints.
    Lowe MJ; Challis RE; Chan CW
    J Acoust Soc Am; 2000 Mar; 107(3):1333-45. PubMed ID: 10738787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation of ultrasonic guided waves in lap-shear adhesive joints: case of incident a0 Lamb wave.
    Lanza di Scalea F; Rizzo P; Marzani A
    J Acoust Soc Am; 2004 Jan; 115(1):146-56. PubMed ID: 14759005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification and identification of mosquito species using artificial neural networks.
    Banerjee AK; Kiran K; Murty US; Venkateswarlu Ch
    Comput Biol Chem; 2008 Dec; 32(6):442-7. PubMed ID: 18838305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of Lamb waves and resonance at an adhesive butt joint of plates.
    Mori N; Biwa S
    Ultrasonics; 2016 Dec; 72():80-8. PubMed ID: 27490207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser ultrasonics and neural networks for the characterization of thin isotropic plates.
    Lefevre F; Jenot F; Ouaftouh M; Duquennoy M; Poussot P; Ourak M
    Rev Sci Instrum; 2009 Jan; 80(1):014901. PubMed ID: 19191454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamb wave detection of limpet mines on ship hulls.
    Bingham J; Hinders M; Friedman A
    Ultrasonics; 2009 Dec; 49(8):706-22. PubMed ID: 19541335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study and signal analysis in the Lamb wave conversion at a bevelled edge.
    Wilkie-Chancellier N; Duflo H; Tinel A; Duclos J
    Ultrasonics; 2004 Apr; 42(1-9):377-81. PubMed ID: 15047315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave Frequency Effects on Damage Imaging in Adhesive Joints Using Lamb Waves and RMS.
    Wojtczak E; Rucka M
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined spectral estimator for phase velocities of multimode Lamb waves in multilayer plates.
    Ta DA; Liu ZQ; Liu X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1145-50. PubMed ID: 16797634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lamb wave source based on the resonant cavity of phononic-crystal plates.
    Sun JH; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):121-8. PubMed ID: 19213638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using mindlin's theory-based plane wave expansion method.
    Hsu JC; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):431-41. PubMed ID: 18334349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality.
    Alvarez-Guerra M; González-Piñuela C; Andrés A; Galán B; Viguri JR
    Environ Int; 2008 Aug; 34(6):782-90. PubMed ID: 18313753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of patients with congestive heart failure using different neural networks approaches.
    Elfadil N; Hossen A
    Technol Health Care; 2009; 17(4):305-21. PubMed ID: 19822947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network.
    Yang L; Ume IC
    Ultrasonics; 2017 Jul; 78():96-109. PubMed ID: 28324778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.
    Dogan E; Sengorur B; Koklu R
    J Environ Manage; 2009 Feb; 90(2):1229-35. PubMed ID: 18691805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ANN application for water quality forecasting.
    Palani S; Liong SY; Tkalich P
    Mar Pollut Bull; 2008 Sep; 56(9):1586-97. PubMed ID: 18635240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of the A0 and S0 Lamb waves interaction with symmetrical notches.
    Benmeddour F; Grondel S; Assaad J; Moulin E
    Ultrasonics; 2009 Feb; 49(2):202-5. PubMed ID: 18801547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic target recognition using a feature-decomposition and data-decomposition modular neural network.
    Wang LC; Der SZ; Nasrabadi NM
    IEEE Trans Image Process; 1998; 7(8):1113-21. PubMed ID: 18276328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind inversion method using Lamb waves for the complete elastic property characterization of anisotropic plates.
    Vishnuvardhan J; Krishnamurthy CV; Balasubramaniam K
    J Acoust Soc Am; 2009 Feb; 125(2):761-71. PubMed ID: 19206853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.