These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18238484)

  • 1. Drive level dependence of the resonant frequency in BAW quartz resonators and his modeling.
    Nosek J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):823-9. PubMed ID: 18238484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect.
    Kim JS; Choi K; Yu I
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):424-6. PubMed ID: 18263202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motional capacitance of layered piezoelectric thickness-mode resonators.
    Schmid M; Benes E; Burger W; Kravchenko V
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):199-206. PubMed ID: 18267576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A circuit model for nonlinear simulation of radio-frequency filters using bulk acoustic wave resonators.
    Ueda M; Iwaki M; Nishihara T; Satoh Y; Hashimoto KY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):849-56. PubMed ID: 18467229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drive-level dependence of doubly rotated langasite resonators with different configurations.
    Zhang H; Kosinski J; Xie Y; Turner J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):963-9. PubMed ID: 23661130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple frequency-based sensing of viscosity and dielectric properties of a liquid using acoustic resonators.
    Johannsmann D; Bücking W; Bode B; Petri J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):677-83. PubMed ID: 20211787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic tuning of MEMS resonators via electromechanical feedback.
    Norouzpour-Shirazi A; Hodjat-Shamami M; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):129-37. PubMed ID: 25585397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear behavior in a piezoelectric resonator: a method of analysis.
    Garcia JE; Perez R; Albareda A; Minguella E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):921-8. PubMed ID: 18238626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and Validation of Contactless Time-Gated Interrogation Technique for Quartz Resonator Sensors.
    Baù M; Ferrari M; Ferrari V
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28574459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental verification of stress compensation in the SBTC-cut.
    Valdois M; Sinha BK; Boy JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):643-51. PubMed ID: 18290245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-thermo-mechanical model for bulk acoustic wave resonators.
    Rocas E; Collado C; Mateu J; Orloff ND; Aigner R; Booth JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2389-403. PubMed ID: 24158294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators.
    Akgul M; Wu L; Ren Z; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):849-69. PubMed ID: 24801124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Nonlinear Resonance, Amplitude-Frequency, and Harmonic Generation Effects in SAW and BAW Devices.
    Pang X; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):422-430. PubMed ID: 31603776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.
    Dulmet B; Ivan ME; Ballandras S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):313-25. PubMed ID: 26642450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.