These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18238515)

  • 1. Small element array algorithm for correcting phase aberration using near-field signal redundancy. I. Principles.
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):29-48. PubMed ID: 18238515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small element array algorithm for correcting phase aberrations using near-field signal redundancy. Part II: experimental results.
    Li Y; Robinson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):49-57. PubMed ID: 18238516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase aberration correction using near-field signal redundancy. I. Principles [Ultrasound medical imaging].
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):355-71. PubMed ID: 18244133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cross algorithm for phase-aberration correction in medical ultrasound images formed with two-dimensional arrays.
    Li Y; Robinson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):588-601. PubMed ID: 18407849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of tissue-motion effects on common-midpoint signals using reciprocal signals.
    Li Y; Robinson B
    J Acoust Soc Am; 2012 Aug; 132(2):872-82. PubMed ID: 22894210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing-error-difference calibration using reciprocal signals.
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2405-17. PubMed ID: 19049920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase aberration correction using near-field signal redundancy. II. Experimental results.
    Li Y; Robinson D; Carpenter D
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):372-9. PubMed ID: 18244134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The time-reversal operator with virtual transducers: application to far-field aberration correction.
    Robert JL; Fink M
    J Acoust Soc Am; 2008 Dec; 124(6):3659-68. PubMed ID: 19206794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-aberration correction using signals from point reflectors and diffuse scatterers: measurements.
    O'Donnell M; Flax SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):768-74. PubMed ID: 18290214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beam steering with segmented annular arrays.
    Ullate LG; Godoy G; Martínez O; Sánchez T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1944-54. PubMed ID: 17036803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of high frame rate imaging with limited diffraction beams.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):84-97. PubMed ID: 18244161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A speckle target adaptive imaging technique in the presence of distributed aberrations.
    Ng GC; Freiburger PD; Walker WF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):140-51. PubMed ID: 18244111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles.
    Flax SW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):758-67. PubMed ID: 18290213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A closed loop ML algorithm for phase aberration correction in phased array imaging systems. I. Algorithm synthesis and experimental results [Ultrasound medical imaging].
    Fortes JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):259-70. PubMed ID: 18244124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Element shape design of 2-D CMUT arrays for reducing grating lobes.
    Bavaro V; Caliano G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):308-18. PubMed ID: 18334338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting small flaws near the interface in pulse-echo.
    Fritsch C; Veca A
    Ultrasonics; 2004 Apr; 42(1-9):797-801. PubMed ID: 15047386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser vector velocimetry: a 3-D measurement technique.
    Churnside JH; Yura HT
    Appl Opt; 1982 Mar; 21(5):845-50. PubMed ID: 20372550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser power beams obtained by the dynamic selection of emitting elements in an array.
    Williams MD
    Appl Opt; 1992 May; 31(15):2738-42. PubMed ID: 20725202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method to design sparse linear arrays for ultrasonic phased array.
    Yang P; Chen B; Shi KR
    Ultrasonics; 2006 Dec; 44 Suppl 1():e717-21. PubMed ID: 16806345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase aberration correction method for ultrasound imaging.
    Karaman M; Atalar A; Koymen H; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):275-82. PubMed ID: 18263182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.