These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 18238547)
1. Micromachined resonant temperature sensors: theoretical and experimental results. Leblois TG; Tellier CR IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):333-40. PubMed ID: 18238547 [TBL] [Abstract][Full Text] [Related]
2. A dual-mode thickness-shear quartz pressure sensor. Besson RJ; Boy JJ; Glotin B; Jinzaki Y; Sinha B; Valdois M IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):584-91. PubMed ID: 18263223 [TBL] [Abstract][Full Text] [Related]
3. Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation. Qin L; Chen Q; Cheng H; Wang QM IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1840-53. PubMed ID: 20679013 [TBL] [Abstract][Full Text] [Related]
4. Experimental verification of stress compensation in the SBTC-cut. Valdois M; Sinha BK; Boy JJ IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):643-51. PubMed ID: 18290245 [TBL] [Abstract][Full Text] [Related]
5. Drive-level dependence of doubly rotated langasite resonators with different configurations. Zhang H; Kosinski J; Xie Y; Turner J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):963-9. PubMed ID: 23661130 [TBL] [Abstract][Full Text] [Related]
6. Measured properties of doubly rotated dilithium tetraborate (Li(2)B(4)BO(7)) resonators and transducers. Kosinski JA; Ballato A; Lu Y IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(2):154-61. PubMed ID: 18263169 [TBL] [Abstract][Full Text] [Related]
7. Micromachined thin film plate acoustic wave resonators (FPAR): Part II. Yantchev V; Arapan L; Katardjiev I IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2701-10. PubMed ID: 20040407 [TBL] [Abstract][Full Text] [Related]
8. Force-frequency effect of thickness mode langasite resonators. Zhang H; Turner JA; Yang J; Kosinski JA Ultrasonics; 2010 Apr; 50(4-5):479-90. PubMed ID: 19942246 [TBL] [Abstract][Full Text] [Related]
9. Advances in high-Q piezoelectric resonator materials and devices. Ballato A; Gualtieri JG IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):834-44. PubMed ID: 18263273 [TBL] [Abstract][Full Text] [Related]
10. Experimental measurements of the force-frequency effect of thickness-mode langasite resonators. Zhang H; Turner JA; Kosinski JA IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1475-8. PubMed ID: 25004514 [TBL] [Abstract][Full Text] [Related]
11. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator. Patel MS; Yong YK IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909 [TBL] [Abstract][Full Text] [Related]
12. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices. Tsai CC; Chu SY; Lu CH IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):660-8. PubMed ID: 19411224 [TBL] [Abstract][Full Text] [Related]
13. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Singh V; Sengupta S; Solanki HS; Dhall R; Allain A; Dhara S; Pant P; Deshmukh MM Nanotechnology; 2010 Apr; 21(16):165204. PubMed ID: 20351404 [TBL] [Abstract][Full Text] [Related]
14. Investigation on recent quartz-like materials for SAW applications. Da Cunha MP; De Azevedo Fagundes S IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1583-90. PubMed ID: 18244357 [TBL] [Abstract][Full Text] [Related]
15. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies. Ivira B; Benech P; Fillit R; Ndagijimana F; Ancey P; Parat G IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):421-30. PubMed ID: 18334348 [TBL] [Abstract][Full Text] [Related]
16. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator. Naik RS; Lutsky JJ; Reif R; Sodini CG IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177 [TBL] [Abstract][Full Text] [Related]
17. Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire. Khaderbad MA; Choi Y; Hiralal P; Aziz A; Wang N; Durkan C; Thiruvenkatanathan P; Amaratunga GA; Rao VR; Seshia AA Nanotechnology; 2012 Jan; 23(2):025501. PubMed ID: 22166842 [TBL] [Abstract][Full Text] [Related]
18. Motional capacitance of layered piezoelectric thickness-mode resonators. Schmid M; Benes E; Burger W; Kravchenko V IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):199-206. PubMed ID: 18267576 [TBL] [Abstract][Full Text] [Related]
19. Temperature-stable double SAW resonators. Martin G; Kunze R; Wall B IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):199-207. PubMed ID: 18334325 [TBL] [Abstract][Full Text] [Related]
20. Acoustic waves in a structure containing two piezoelectric plates separated by an air (vacuum) gap. Borodina IA; Zaitsev BD; Kuznetsova IE; Teplykh AA IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2677-81. PubMed ID: 24297033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]