These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18238548)

  • 1. Lam e-mode miniaturized quartz temperature sensors.
    Kanie H; Kawaehima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):341-5. PubMed ID: 18238548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New cut angle quartz crystal microbalance with low frequency-temperature coefficients in an aqueous phase.
    Shen D; Kang Q; Wang YE; Hu Q; Du J
    Talanta; 2008 Aug; 76(4):803-8. PubMed ID: 18656662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short- and long-term stability of resonant quartz temperature sensors.
    Spassov L; Gadjanova V; Velcheva R; Dulmet B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1626-31. PubMed ID: 18986952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of a length-extensional mode rectangular X-cut quartz resonator with zero temperature coefficient.
    Yokoyama Y; Kawashima H; Kanie H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):847-52. PubMed ID: 16764439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STW two-port asynchronous resonator on BT-cut quartz.
    Soluch W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2519-21. PubMed ID: 19049932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of stress compensation in the SBTC-cut.
    Valdois M; Sinha BK; Boy JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):643-51. PubMed ID: 18290245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transient model of a crystal resonator employing thickness-shear vibrations.
    Shmaliy YS; Kurochka OH; Sokolinskiy EG; Rudnev OE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1396-406. PubMed ID: 18244335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and Validation of Contactless Time-Gated Interrogation Technique for Quartz Resonator Sensors.
    BaĆ¹ M; Ferrari M; Ferrari V
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28574459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring biochemical reactions using Y-cut quartz thermal sensors.
    Ren K; Kao P; Pisani MB; Tadigadapa S
    Analyst; 2011 Jul; 136(14):2904-11. PubMed ID: 21655628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A temperature insensitive quartz microbalance.
    Pierce DE; Kim Y; Vig JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1238-45. PubMed ID: 18244285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-temperature behavior of spurious vibrations of rectangular AT-cut quartz plates.
    Sekimoto H; Goka S; Ishizaki A; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1017-21. PubMed ID: 18244256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelastic coefficients of alpha quartz.
    Kosinski JA; Gualtieri JG; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):502-7. PubMed ID: 18267662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAW Temperature Sensor on Quartz.
    Zhgoon S; Shvetsov A; Ancev I; Bogoslovsky S; Sapozhnikov G; Trokhimets K; Derkach M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1066-75. PubMed ID: 26067041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity.
    Wang J; Zhao W; Du J; Hu Y
    Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass effects of quartz resonant sensors with different surface microstructures in liquids.
    Zhang C; Schranz S; Lucklum R; Hauptmann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1204-10. PubMed ID: 18244280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.