These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18238554)

  • 61. Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
    Li D; Cheng L; Yu GH; Vipperman JS
    J Acoust Soc Am; 2007 Nov; 122(5):2615-25. PubMed ID: 18189553
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transient probability in basins of noise influenced responses of mono and coupled Duffing oscillators.
    Cilenti L; Balachandran B
    Chaos; 2021 Jun; 31(6):063117. PubMed ID: 34241289
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Statistical model for fading return signals in coherent lidars.
    Belmonte A
    Appl Opt; 2010 Dec; 49(35):6737-48. PubMed ID: 21151230
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy.
    Kobayashi K; Yamada H; Matsushige K
    Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Investigation on Eigenfrequency of a Cylindrical Shell Resonator under Resonator-Top Trimming Methods.
    Zeng K; Hu Y; Deng G; Sun X; Su W; Lu Y; Duan J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869507
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Equidistant spectra of anharmonic oscillators.
    Dubov SY; Eleonskii VM; Kulagin NE
    Chaos; 1994 Mar; 4(1):47-53. PubMed ID: 12780085
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-temperature superconducting resonators.
    Taber RC; Hollenhorst JN; Cutler LS; Bagwell TL; Newman N; Cole BF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):398-404. PubMed ID: 18267649
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stabilization of laser beam alignment to an optical resonator by heterodyne detection of off-axis modes.
    Sampas NM; Anderson DZ
    Appl Opt; 1990 Jan; 29(3):394-403. PubMed ID: 20556119
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 75. One-port noise model of a crystal oscillator.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):25-32. PubMed ID: 14995013
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Method for measuring the losses and loading of a quartz crystal microbalance.
    Kankare J; Loikas K; Salomäki M
    Anal Chem; 2006 Mar; 78(6):1875-82. PubMed ID: 16536423
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data.
    Foi A; Trimeche M; Katkovnik V; Egiazarian K
    IEEE Trans Image Process; 2008 Oct; 17(10):1737-54. PubMed ID: 18784024
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Remote characterization of resonance frequency with a wirelessly powered parametric oscillator.
    Qian W; Qian C
    IEEE Trans Instrum Meas; 2020 Apr; 69(4):1690-1697. PubMed ID: 32655185
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Doubly rotated quartz resonators with a low amplitude-frequency effect: the LD-cut.
    Gufflet N; Sthal F; Boy JJ; Bourquin R; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1681-5. PubMed ID: 11800131
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A parametric quartz crystal oscillator.
    Komine V; Galliou S; Makarov A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Dec; 50(12):1656-61. PubMed ID: 14761035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.