These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18238555)

  • 1. A new type of balanced-bridge controlled oscillator.
    Karlquist RK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):390-403. PubMed ID: 18238555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALC crystal oscillators based pressure and temperature measurement integrated circuit for high temperature oil well applications.
    Bianchi NA; Karam JM; Courtois B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1241-5. PubMed ID: 18238666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel microcomputer temperature-compensating method for an overtone crystal oscillator.
    Li M; Huang X; Tan F; Fan Y; Liang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1919-22. PubMed ID: 16422403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greatly improved small inductance measurement using quartz crystal parasitic capacitance compensation.
    Matko V; Jezernik K
    Sensors (Basel); 2010; 10(4):3954-60. PubMed ID: 22319335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: Phase-locked loop with a voltage controlled oscillator based on a liquid crystal cell as variable capacitance.
    Marcos C; Sánchez-Pena JM; Torres JC; Pérez I; Urruchi V
    Rev Sci Instrum; 2011 Dec; 82(12):126101. PubMed ID: 22225256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-controlled double-resonance quartz oscillator using variable-capacitance diode.
    Izyan Binti Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):738-45. PubMed ID: 22547284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise derivation for the equivalent circuit parameters of a crystal resonator with series capacitor.
    Huang X; Liu D; Wang Y; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1316-7. PubMed ID: 22718883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major improvements of quartz crystal pulling sensitivity and linearity using series reactance.
    Matko V; Safarič R
    Sensors (Basel); 2009; 9(10):8263-70. PubMed ID: 22408504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely low phase noise UHF oscillators utilizing high-overtone, bulk-acoustic resonators.
    Driscoll MM; Jelen RA; Matthews N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):774-9. PubMed ID: 18267694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.
    Chaitanya Kumar S; Ebrahim-Zadeh M
    Opt Lett; 2011 Jul; 36(13):2578-80. PubMed ID: 21725485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a new integrated current source with the modified Howland circuit for EIT applications.
    Hong H; Rahal M; Demosthenous A; Bayford RH
    Physiol Meas; 2009 Oct; 30(10):999-1007. PubMed ID: 19706961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.
    Hwang YS; Kung CM; Lin HC; Chen JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):254-62. PubMed ID: 19251512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slowly varying function method applied to quartz crystal oscillator transient calculation.
    Brendel R; Ratier N; Couteleau L; Marianneau G; Guillemot P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):520-7. PubMed ID: 18244202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low power RF amplifier circuit for ion trap applications.
    Noriega JR; García-Delgado LA; Gómez-Fuentes R; García-Juárez A
    Rev Sci Instrum; 2016 Sep; 87(9):094704. PubMed ID: 27782577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 300-MHz digitally compensated SAW oscillator.
    Cowan WD; Slobodnik AR; Roberts GA; Silva JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):380-5. PubMed ID: 18290163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note: Rapid offset reduction of impedance bridges taking into account instrumental damping and phase shifting.
    van der Wel CM; Kortschot RJ; Bakelaar IA; Erné BH; Kuipers BW
    Rev Sci Instrum; 2013 Mar; 84(3):036109. PubMed ID: 23556861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low phase noise operation of microwave oscillator circuits.
    Nallatamby JC; Prigent M; Vaury E; Laloue A; Camiade M; Obregon J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):411-20. PubMed ID: 18238558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low power high-performance radio frequency oscillator for driving ion traps.
    Jau YY; Benito FM; Partner H; Schwindt PD
    Rev Sci Instrum; 2011 Feb; 82(2):023118. PubMed ID: 21361584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.