These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18238566)

  • 1. Phase and light shift determination in an optically pumped cesium beam frequency standard.
    Makdissi A; Berthet JP; de Clercq E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):461-5. PubMed ID: 18238566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of fluorescence light shifts in optically pumped cesium beam frequency standards.
    Hisadome K; Kihara M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):407-12. PubMed ID: 18267601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency performances of a miniature optically pumped cesium beam frequency standard.
    Bousset B; Lucas-Leclin G; Hamouda F; Cerez P; Theobald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):366-71. PubMed ID: 18238433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new design of a diffused laser light optically pumped small cesium beam frequency standard.
    Chen J; Wang F; Wang Y; Yang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):457-60. PubMed ID: 18238565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis tools for the accurate evaluation of a small frequency standard.
    Hamouda F; Theobald G; Cerez P; Audoin C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):449-56. PubMed ID: 18238564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency shifts in cesium beam clocks induced by microwave leakages.
    Boussert B; Theobald G; Cerez P; de Clercq E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):728-38. PubMed ID: 18244224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A linewidth locking method to control the microwave power in optically pumped cesium-beam clocks.
    Xie W; Wang Q; He X; Xiong Z; Chen N; Fang S; Qi X; Chen X
    Rev Sci Instrum; 2020 Sep; 91(9):094708. PubMed ID: 33003804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New design for a high performance optically pumped cesium beam tube.
    Giordano V; Hamel A; Petit P; Theobald G; Dimarcq N; Cerez P; Audoin C
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):350-7. PubMed ID: 18267595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency instability of a miniature optically pumped cesium-beam atomic frequency standard.
    Xie W; Wang Q; He X; Chen N; Xiong Z; Fang S; Qi X; Chen X
    Rev Sci Instrum; 2020 Jul; 91(7):074705. PubMed ID: 32752798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact optically pumped cesium beam atomic clock with a 5-day frequency stability of 7×10
    He X; Fang S; Yuan Z; Xie W; Chen N; Xiong Z; Wang Q; Qi X; Chen X
    Appl Opt; 2021 Dec; 60(34):10761-10765. PubMed ID: 35200944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of the beam reversal technique on compact cesium clocks: towards an improvement in accuracy.
    Chassagne L; Hamouda F; Théobald G; Cérez P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1513-6. PubMed ID: 11800112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the microwave amplitude in optically pumped cesium beam frequency standards.
    Audoin C; Hamouda F; Chassagne L; Barillet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):407-13. PubMed ID: 18238438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient response following frequency or amplitude switching in a cesium beam tube.
    Hamouda F; Audoin C; Chassagne L; Barillet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):861-6. PubMed ID: 18238489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping.
    Scholtes T; Schultze V; IJsselsteijn R; Woetzel S; Meyer HG
    Opt Express; 2012 Dec; 20(28):29217-22. PubMed ID: 23388747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillation of the center of the Rabi pedestal in an optically pumped Cs beam standard.
    de Clercq E; Makdissi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):393-5. PubMed ID: 12322890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical angular mapping for pattern recognition using self-pumped phase conjugation.
    Lee YK
    Appl Opt; 1994 Sep; 33(26):6228-34. PubMed ID: 20936041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard.
    Zhang J; Chen J; Wang F; Yang D; Wang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Sep; 50(9):1210-3. PubMed ID: 14561038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical origin of the frequency shifts in cesium beam frequency standards-related environmental sensitivity.
    Audoin C; Dimarcq N; Giodano V; Viennet J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):412-21. PubMed ID: 18267651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulated submillimeter laser interferometer system for plasma density measurements.
    Wolfe SM; Button KJ; Waldman J; Cohn DR
    Appl Opt; 1976 Nov; 15(11):2645-8. PubMed ID: 20165466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical frequency dependence of the light shift effect for vector magnetometry with cesium.
    Lou JW; Cranch GA
    Appl Opt; 2020 Mar; 59(7):2072-2076. PubMed ID: 32225729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.