These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18238571)

  • 1. Assessment of GPS carrier-phase stability for time-transfer applications.
    Larson KM; Levine J; Nelson LM; Parker TE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):484-94. PubMed ID: 18238571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier-phase time transfer.
    Larson KM; Levine J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1001-12. PubMed ID: 18238505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time transfer using the phase of the GPS carrier.
    Larson K; Levine J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):539-40. PubMed ID: 18244205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further characterization of the time transfer capabilities of precise point positioning (PPP): the Sliding Batch Procedure.
    Guyennon N; Cerretto G; Tavella P; Lahaye F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1634-41. PubMed ID: 19686979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term comparisons between two-way satellite and geodetic time transfer systems.
    Plumb JF; Larson KM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1912-8. PubMed ID: 16422402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the potential of Galileo E5 for time transfer.
    Martínez-Belda MC; Defraigne P; Bruyninx C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):121-31. PubMed ID: 23287919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier-phase-based two-way satellite time and frequency transfer.
    Fujieda M; Gotoh T; Nakagawa F; Tabuchi R; Aida M; Amagai J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2625-30. PubMed ID: 23221211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First international two-way satellite time and frequency transfer experiment employing dual pseudo-random noise codes.
    Tseng WH; Huang YJ; Gotoh T; Hobiger T; Fujieda M; Aida M; Li T; Lin SY; Lin HT; Feng KM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):531-8. PubMed ID: 22481788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A straightforward frequency-estimation technique for GPS carrier-phase time transfer.
    Hackman C; Levine J; Parker TE; Piester D; Becker J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1570-83. PubMed ID: 16964907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear quadratic stochastic control of atomic hydrogen masers.
    Koppang P; Leland R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):517-22. PubMed ID: 18238452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study of GPS Carrier-Phase Time Transfer Noise Based on NIST GPS Receivers.
    Yao J; Levine J
    J Res Natl Inst Stand Technol; 2016; 121():372-388. PubMed ID: 34434628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly.
    Yao J; Levine J; Weiss M
    J Res Natl Inst Stand Technol; 2015; 120():280-92. PubMed ID: 26958451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved GPS-based time link calibration involving ROA and PTB.
    Esteban H; Palacio J; Galindo FJ; Feldmann T; Bauch A; Piester D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):714-20. PubMed ID: 20211792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of Galileo signals for time metrology.
    Defraigne P; Aerts W; Cerretto G; Cantoni E; Sleewaegen JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1967-75. PubMed ID: 25474773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and Performance Evaluation of QZSS Onboard Satellite Clocks.
    Xie W; Huang G; Cui B; Li P; Cao Y; Wang H; Chen Z; Shao B
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.
    Defraigne P; Sleewaegen JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):986-92. PubMed ID: 26595916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time transfer using multi-channel GPS receivers.
    Levine J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):392-8. PubMed ID: 18238436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous geodetic time-transfer analysis methods.
    Dach R; Schildknecht T; Hugentobler U; Bernier LG; Dudle G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jul; 53(7):1250-9. PubMed ID: 16889332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.
    Leute J; Huntemann N; Lipphardt B; Tamm C; Nisbet-Jones PB; King SA; Godun RM; Jones JM; Margolis HS; Whibberley PB; Wallin A; Merimaa M; Gill P; Peik E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):981-5. PubMed ID: 26863657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency transfer using GPS carrier phases: influence of temperature variations near the receiver.
    Bruyninx C; Defraigne P; Dehant V; Paquet P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):522-5. PubMed ID: 18238577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.