These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18238622)

  • 1. Electroacoustic evaluations of 1-3 piezocomposite SonoPanel(TM ) materials.
    Howarth TR; Ting RY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):886-94. PubMed ID: 18238622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selecting passive and active materials for 1.3 composite power transducers.
    Richard C; Goujon L; Guyomar D; Lee HS; Grange G
    Ultrasonics; 2002 May; 40(1-8):895-901. PubMed ID: 12160066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.
    Kirk KJ; Schmarje N
    Ultrasonics; 2013 Jan; 53(1):185-90. PubMed ID: 22784707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and theoretical determination of 1-3 piezocomposite electroacoustic tensor.
    Ferin G; Certon D; Felix N; Patat F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e763-72. PubMed ID: 16797658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity.
    Lee H; Choi S; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1033-44. PubMed ID: 20815440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of bare 1-3 piezocomposite array to localized electrical excitation.
    Guyonvarch J; Certon D; Ratsimandresy L; Patat F; Lethiecq M
    J Acoust Soc Am; 2005 Jan; 117(1):200-9. PubMed ID: 15704413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer piezocomposite structures with piezoceramic volume fractions determined by mathematical optimisation.
    Abrar A; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):259-65. PubMed ID: 15047295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-Cell Piezoelectric Composite With 1-3 Connectivity.
    Rouffaud R; Levassort F; Pham Thi M; Bantignies C; Lethiecq M; Hladky-Hennion AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2215-2223. PubMed ID: 27913333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined genetic algorithm and finite element method for the determination of a practical elasto-electric set for 1-3 piezocomposite phases.
    Rouffaud R; Hladky-Hennion AC; Levassort F
    Ultrasonics; 2017 May; 77():214-223. PubMed ID: 28254566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
    Smith WA; Auld BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):40-7. PubMed ID: 18267555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective electroelastic moduli of 3-3(0-3) piezocomposites.
    Levassort F; Lethiecq M; Desmare R; Hue TH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1028-34. PubMed ID: 18238508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling (2-2) piezocomposites partially sliced in the polymer phase.
    Sanchez S; Montero de Espinosa FR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):287-96. PubMed ID: 18244126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and finite element modelling studies on single-layer and multi-layer 1-3 piezocomposite transducers.
    Ramesh R; Prasad CD; Kumar TK; Gavane LA; Vishnubhatla RM
    Ultrasonics; 2006 Nov; 44(4):341-9. PubMed ID: 16890265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-mechanical stress effect on 1-3 piezocomposite power transducer performance.
    Richard C; Lee HS; Guyomar D
    Ultrasonics; 2004 Apr; 42(1-9):417-24. PubMed ID: 15047322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogenization of periodic 1-3 piezocomposite using wave propagation: Toward an experimental method.
    Balé A; Rouffaud R; Levassort F; Brenner R; Hladky-Hennion AC
    J Acoust Soc Am; 2021 May; 149(5):3122. PubMed ID: 34241119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SU-8-based nanocomposites for acoustical matching layer.
    Wang S; Campistron P; Carlier J; Callens-Debavelaere D; Nongaillard B; NDieguene A; Nassar G; Soyer C; Zhao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1483-9. PubMed ID: 19574159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of coupled vibrations on the acoustical performance of underwater cylindrical shell transducers.
    Aronov B; Brown DA; Bachand CL
    J Acoust Soc Am; 2007 Dec; 122(6):3419-27. PubMed ID: 18247751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coupled analytical model for hydrostatic response of 1-3 piezocomposites.
    Rajapakse N; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1847-58. PubMed ID: 18986927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.