These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 18238679)

  • 1. PVDF reference hydrophone development in the UK-from fabrication and lamination to use as secondary standards.
    Robinson S; Preston R; Smith M; Millar C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1336-44. PubMed ID: 18238679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of piezoelectric PVDF on medical ultrasound exposure measurements, standards, and regulations.
    Harris GR; Preston RC; Dereggi AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1321-35. PubMed ID: 18238678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.
    Rajagopal S; Zeqiri B; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-dimensional hydrophone array using piezoelectric PVDF.
    Hurrell A; Duck F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1345-53. PubMed ID: 18238680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.
    Bleeker HJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1354-62. PubMed ID: 18238681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unidimensional modeling of multi-layered piezoelectric transducer structures.
    Powell DJ; Hayward G; Ting RY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):667-77. PubMed ID: 18244218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophone measurements in diagnostic ultrasound fields.
    Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):87-101. PubMed ID: 18290135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz.
    Oliveira EG; Costa-Felix RP; Machado JC
    Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effective shock wave hydrophones.
    Schafer ME
    J Stone Dis; 1993 Apr; 5(2):73-6. PubMed ID: 10148592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of disposable membrane hydrophones for a frequency range from 1MHz to 10MHz.
    Lee JW; Ohm WS; Kim YT
    Ultrasonics; 2017 Nov; 81():50-58. PubMed ID: 28578220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute calibration of hydrophones immersed in sandy sediment.
    Robb GB; Robinson SP; Theobald PD; Hayman G; Humphrey VF; Leighton TG; Wang LS; Dix JK; Best AI
    J Acoust Soc Am; 2009 May; 125(5):2918-27. PubMed ID: 19425635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method and an Experimental Setup for Measuring the Self-Noise of Piezoelectric Hydrophones.
    Krishnakumar R; Ramesh R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):413-421. PubMed ID: 31562081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2325-33. PubMed ID: 22083766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.