These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18238683)

  • 1. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide-band piezoelectric polymer acoustic sources.
    Lewin PA; Schafer ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):175-85. PubMed ID: 18290144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.
    Bleeker HJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1354-62. PubMed ID: 18238681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry.
    Harris GR; Gammell PM; Lewin PA; Radulescu EG
    Ultrasonics; 2004 Apr; 42(1-9):349-53. PubMed ID: 15047310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection.
    Beard PC; Perennes F; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1575-82. PubMed ID: 18244356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):247-54. PubMed ID: 12782255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.
    Rajagopal S; Zeqiri B; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-dimensional hydrophone array using piezoelectric PVDF.
    Hurrell A; Duck F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1345-53. PubMed ID: 18238680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute calibration of hydrophones immersed in sandy sediment.
    Robb GB; Robinson SP; Theobald PD; Hayman G; Humphrey VF; Leighton TG; Wang LS; Dix JK; Best AI
    J Acoust Soc Am; 2009 May; 125(5):2918-27. PubMed ID: 19425635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 100 MHz bandwidth planar laser-generated ultrasound source for hydrophone calibration.
    Rajagopal S; Cox BT
    Ultrasonics; 2020 Dec; 108():106218. PubMed ID: 32721650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry.
    Koch C; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1303-14. PubMed ID: 18244323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear propagation model for ultrasound hydrophones calibration in the frequency range up to 100 MHz.
    Radulescu EG; Wójcik J; Lewin PA; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):239-45. PubMed ID: 12782254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.