These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18238814)

  • 1. The hypoxia of high altitude causes restricted fetal growth in chick embryos with the extent of this effect depending on maternal altitudinal status.
    Mehta AR; Mehta PR
    J Physiol; 2008 Mar; 586(6):1469-71. PubMed ID: 18238814
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of oxygen in prenatal growth: studies in the chick embryo.
    Giussani DA; Salinas CE; Villena M; Blanco CE
    J Physiol; 2007 Dec; 585(Pt 3):911-7. PubMed ID: 17962335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High altitude hypoxia and blood pressure dysregulation in adult chickens.
    Herrera EA; Salinas CE; Blanco CE; Villena M; Giussani DA
    J Dev Orig Health Dis; 2013 Feb; 4(1):69-76. PubMed ID: 25080183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-altitude hypoxia and echocardiographic indices of pulmonary hypertension in male and female chickens at adulthood.
    Salinas CE; Blanco CE; Villena M; Giussani DA
    Circ J; 2014; 78(6):1459-64. PubMed ID: 24739224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steroidogenesis in sheep pregnancy with intrauterine growth retardation by high-altitude hypoxia: effects of maternal altitudinal status and antioxidant treatment.
    Parraguez VH; Urquieta B; De los Reyes M; González-Bulnes A; Astiz S; Muñoz A
    Reprod Fertil Dev; 2013; 25(4):639-45. PubMed ID: 22958455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences.
    Tintu A; Rouwet E; Verlohren S; Brinkmann J; Ahmad S; Crispi F; van Bilsen M; Carmeliet P; Staff AC; Tjwa M; Cetin I; Gratacos E; Hernandez-Andrade E; Hofstra L; Jacobs M; Lamers WH; Morano I; Safak E; Ahmed A; le Noble F
    PLoS One; 2009; 4(4):e5155. PubMed ID: 19357774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPK activation in pregnant human myometrial arteries from high-altitude and intrauterine growth-restricted pregnancies.
    Lorca RA; Matarazzo CJ; Bales ES; Houck JA; Orlicky DJ; Euser AG; Julian CG; Moore LG
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H203-H212. PubMed ID: 32502374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypobaric hypoxia-induced intrauterine growth retardation.
    Chang JH; Rutledge JC; Stoops D; Abbe R
    Biol Neonate; 1984; 46(1):10-3. PubMed ID: 6743709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal growth restriction and maternal oxygen transport during high altitude pregnancy.
    Moore LG
    High Alt Med Biol; 2003; 4(2):141-56. PubMed ID: 12855048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen Conditioning: A New Technique for Improving Living and Working at High Altitude.
    West JB
    Physiology (Bethesda); 2016 May; 31(3):216-22. PubMed ID: 27053735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia].
    Li X; Li W; Feng S; Wang R
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2019 Dec; 48(6):674-681. PubMed ID: 31955543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of altitude on the heart and the lungs.
    Bärtsch P; Gibbs JS
    Circulation; 2007 Nov; 116(19):2191-202. PubMed ID: 17984389
    [No Abstract]   [Full Text] [Related]  

  • 13. High-altitude ancestry protects against hypoxia-associated reductions in fetal growth.
    Julian CG; Vargas E; Armaza JF; Wilson MJ; Niermeyer S; Moore LG
    Arch Dis Child Fetal Neonatal Ed; 2007 Sep; 92(5):F372-7. PubMed ID: 17329275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension.
    Grimminger J; Richter M; Tello K; Sommer N; Gall H; Ghofrani HA
    Can Respir J; 2017; 2017():8381653. PubMed ID: 28522921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative human ventilatory adaptation to high altitude.
    Moore LG
    Respir Physiol; 2000 Jul; 121(2-3):257-76. PubMed ID: 10963780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient dissociation of oxygen from hemoglobin in Tibetan chicken embryos compared with lowland chicken embryos incubated in hypoxia.
    Liu C; Zhang LF; Song ML; Bao HG; Zhao CJ; Li N
    Poult Sci; 2009 Dec; 88(12):2689-94. PubMed ID: 19903969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythropoietic and somatic development in chick embryos at high altitude (3,800 m).
    Atherton RW; Timiras PS
    Am J Physiol; 1970 Jan; 218(1):75-9. PubMed ID: 5409894
    [No Abstract]   [Full Text] [Related]  

  • 18. Adrenocortical suppression in highland chick embryos is restored during incubation at sea level.
    Salinas CE; Villena M; Blanco CE; Giussani DA
    High Alt Med Biol; 2011; 12(1):79-87. PubMed ID: 21452969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Altitude exposure and staying at high altitude in pregnancy: effects on the mother and fetus].
    Baumann H; Huch R
    Zentralbl Gynakol; 1986; 108(15):889-99. PubMed ID: 3765945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altitude-aggravated illness: examples from pregnancy and prenatal life.
    Moore LG
    Ann Emerg Med; 1987 Sep; 16(9):965-73. PubMed ID: 3307556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.