BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18239415)

  • 1. Identification of ω-aminotransferase from Caulobacter crescentus and site-directed mutagenesis to broaden substrate specificity.
    Hwang BY; Ko SH; Park HY; Seo JH; Lee BS; Kim BG
    J Microbiol Biotechnol; 2008 Jan; 18(1):48-54. PubMed ID: 18239415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesigning the substrate specificity of omega-aminotransferase for the kinetic resolution of aliphatic chiral amines.
    Cho BK; Park HY; Seo JH; Kim J; Kang TJ; Lee BS; Kim BG
    Biotechnol Bioeng; 2008 Feb; 99(2):275-84. PubMed ID: 17680656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the substrate-recognition mode of aromatic amino acid aminotransferase by combined use of quasisubstrates and site-directed mutagenesis: systematic hydroxy-group addition/deletion studies to probe the enzyme-substrate interactions.
    Hayashi H; Inoue K; Mizuguchi H; Kagamiyama H
    Biochemistry; 1996 May; 35(21):6754-61. PubMed ID: 8639626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational selection, identification and structural analysis of ω-aminotransferases with various substrate specificities from the genome sequence of Mesorhizobium loti MAFF303099.
    Seo JH; Hwang JY; Seo SH; Kang H; Hwang BY; Kim BG
    Biosci Biotechnol Biochem; 2012; 76(7):1308-14. PubMed ID: 22785472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum.
    Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G
    Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering aromatic L-amino acid transaminase for the asymmetric synthesis of constrained analogs of L-phenylalanine.
    Cho BK; Seo JH; Kang TJ; Kim J; Park HY; Lee BS; Kim BG
    Biotechnol Bioeng; 2006 Aug; 94(5):842-50. PubMed ID: 16673402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paracoccus denitrificans aromatic amino acid aminotransferase: a model enzyme for the study of dual substrate recognition mechanism.
    Oue S; Okamoto A; Nakai Y; Nakahira M; Shibatani T; Hayashi H; Kagamiyama H
    J Biochem; 1997 Jan; 121(1):161-71. PubMed ID: 9058208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accommodation of GDP-linked sugars in the active site of GDP-perosamine synthase.
    Cook PD; Carney AE; Holden HM
    Biochemistry; 2008 Oct; 47(40):10685-93. PubMed ID: 18795799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids.
    Mathew S; Nadarajan SP; Chung T; Park HH; Yun H
    Enzyme Microb Technol; 2016 Jun; 87-88():52-60. PubMed ID: 27178795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the ω-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential.
    Rausch C; Lerchner A; Schiefner A; Skerra A
    Proteins; 2013 May; 81(5):774-87. PubMed ID: 23239223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and reactivity of YbdL from Escherichia coli identify a methionine aminotransferase function.
    Dolzan M; Johansson K; Roig-Zamboni V; Campanacci V; Tegoni M; Schneider G; Cambillau C
    FEBS Lett; 2004 Jul; 571(1-3):141-6. PubMed ID: 15280032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase.
    Cho BK; Seo JH; Kang TW; Kim BG
    Biotechnol Bioeng; 2003 Jul; 83(2):226-34. PubMed ID: 12768628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: the last homeless enzyme of aromatic amino acids biosynthesis.
    Graindorge M; Giustini C; Jacomin AC; Kraut A; Curien G; Matringe M
    FEBS Lett; 2010 Oct; 584(20):4357-60. PubMed ID: 20883697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel metallo-beta-lactamase, Mbl1b, produced by the environmental bacterium Caulobacter crescentus.
    Simm AM; Higgins CS; Pullan ST; Avison MB; Niumsup P; Erdozain O; Bennett PM; Walsh TR
    FEBS Lett; 2001 Dec; 509(3):350-4. PubMed ID: 11749954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic ability and stability of two recombinant mutants of D-amino acid transaminase involved in coenzyme binding.
    Van Ophem PW; Pospischil MA; Ringe D; Peisach D; Petsko G; Soda K; Manning JM
    Protein Sci; 1995 Dec; 4(12):2578-86. PubMed ID: 8580849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel transaminase, (R)-amine:pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning.
    Iwasaki A; Matsumoto K; Hasegawa J; Yasohara Y
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1563-73. PubMed ID: 22002066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of aminotransferase chimeras and analysis of their substrate specificity.
    Miyazawa K; Kawaguchi S; Okamoto A; Kato R; Ogawa T; Kuramitsu S
    J Biochem; 1994 Mar; 115(3):568-77. PubMed ID: 8056774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site model for gamma-aminobutyrate aminotransferase explains substrate specificity and inhibitor reactivities.
    Toney MD; Pascarella S; De Biase D
    Protein Sci; 1995 Nov; 4(11):2366-74. PubMed ID: 8563634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and crystallographic analysis of active site mutants of Escherichia coli gamma-aminobutyrate aminotransferase.
    Liu W; Peterson PE; Langston JA; Jin X; Zhou X; Fisher AJ; Toney MD
    Biochemistry; 2005 Mar; 44(8):2982-92. PubMed ID: 15723541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants for substrate selectivity of ω-transaminases.
    Park ES; Kim M; Shin JS
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2425-35. PubMed ID: 21983703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.